Review
BibTex RIS Cite

A mini-review on the microplastic-heavy metal interactions and the factors affecting their fate in aquatic habitats

Year 2024, Volume: 33 Issue: 2, 162 - 193, 25.12.2024
https://doi.org/10.53447/communc.1423616

Abstract

Microplastic particles found in water bodies are recognized a serious environmental concern due to their effects on aquatic biota. Microplastics, with their large surface area, are considered as vectors since they provide suitable surfaces for the adherence of several toxic pollutants, including heavy metals, pesticides, and nanoparticles. Several physico-chemical properties of plastic particles including chemical structure, polymer chain organization, specific surface area, and particle dimensions, and environmental parameters (ambient temperature, pH and salinity of the media and the dissolved organic matter concentration) may reshape the dynamic interactions between heavy metal ions and microplastic surfaces. Microplastic-heavy metal interaction poses a global health threat to aquatic biota and eventually human beings through the food chain since attached metal ions may be transported to aquatic organisms. Therefore, it is critical to clarify the mechanisms responsible for the adherence of metal ions to plastic surfaces. Such an approach will help government departments to promote management strategies and design of treatment practices. In this study, recent reports on the adherence of heavy metal ions to microplastic particles in aquatic habitats, along with the factors that might change the adsorption capacity of microplastics, are reviewed and discussed in detail.

References

  • Petersen, F., Hubbart, J.A., The occurrence and transport of microplastics: The state of the science. Science of The Total Environment, 758 (2021), 143936. https://doi.org/10.1016/j.scitotenv.2020.143936
  • Leal Filho, W., Saari, U., Fedoruk, M., Iital, A., Moora, H., Klöga, M., Voronova, V., An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. Journal of Cleaner Production, 214 (2019), 550–558. https://doi.org/10.1016/j.jclepro.2018.12.256
  • Wang, J., Tan, Z., Peng, J., Qiu, Q., Li, M., The behaviors of microplastics in the marine environment. Marine Environmental Research, 113 (2016), 7-17. https://doi.org/10.1016/j.marenvres.2015.10.014
  • Geyer, R., Jambeck, J.R., Law, K.L., Production, use, and fate of all plastics ever made. Science Advances, 3 (7) (2017), e1700782. https://doi.org/10.1126/sciadv.1700782
  • Plastics Europe, Plastics - The Facts 2017: An analysis of European plastics production, demand and waste data, (2017). Retrieved from https://plasticseurope.org/wp-content/uploads/2021/10/2017-Plastics-the-facts.pdf (accessed 13.04.2023).
  • Plastics Europe, Plastics - The Facts 2022: An analysis of European plastics production, demand, conversion and end-of-life management, (2022). Retrieved from https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed 13.04.2023).
  • Schwarz, A.E., Ligthart, T.N., Boukris, E., van Harmelen, T., Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study. Marine Pollution Bulletin, 143 (2019), 92-100. https://doi.org/10.1016/j.marpolbul.2019.04.029
  • Borrelle, S.B., Ringma, J., Law, K.L., Monnahan, C.C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G.H., Hilleary, M.A., Eriksen, M., Possingham, H.P., De Frond, H., Gerber, L.R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M., Rochman, C.M., Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369 (6510) (2020), 1515-1518. https://doi.org/10.1126/science.aba3656
  • Hoellein, T., Rojas, M., Pink, A., Gasior, J., Kelly, J., Anthropogenic litter in urban freshwater ecosystems: Distribution and microbial interactions. PLoS One, 9 (6) (2014), e98485. https://doi.org/10.1371/journal.pone.0098485
  • Nassouhi̇, D., Ergönül, M.B., Fi̇ki̇rdeşi̇ci̇, Ş., Karacakaya, P., Atasağun, S., Ağır metal kirliliğinin biyoremediasyonunda sucul makrofitlerin kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14 (2) (2018), 148-165. https://doi.org/10.22392/egirdir.371340
  • Zhang, Q., Chen, Z., Li, Y., Wang, P., Zhu, C., Gao, G., Xiao, K., Sun, H., Zheng, S., Liang, Y., Jiang, G., Occurrence of organochlorine pesticides in the environmental matrices from King George Island, west Antarctica. Environmental Pollution, 206 (2015), 142-149. https://doi.org/10.1016/j.envpol.2015.06.025
  • Ergönül, M.B., Nassouhi, D., Çelik, M., Dilbaz, D., Sazlı, D., Atasağun, S., Lemna trisulca L.: a novel phytoremediator for the removal of zinc oxide nanoparticles (ZnO NP) from aqueous media. Environmental Science and Pollution Research, 29 (60) (2022), 90852-90867. https://doi.org/10.1007/s11356-022-22112-x
  • Sazlı, D., Nassouhi, D., Ergönül, M., Atasağun, S., A comprehensive review on microplastic pollution in aquatic ecosystems and their effects on aquatic biota. Aquatic Sciences and Engineering, 38 (1) (2023), 12-46. https://doi.org/10.26650/ASE20221186783
  • Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., Plastic waste inputs from land into the ocean. Science, 347 (6223) (2015), 768–771. https://doi.org/10.1126/science.1260352
  • Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L., Suh, S., Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8 (9) (2020), 3494-3511. https://doi.org/10.1021/acssuschemeng.9b06635
  • Ward, C.P., Reddy, C.M., We need better data about the environmental persistence of plastic goods. PNAS, (2020). https://doi.org/10.1073/pnas.2008009117
  • Andrady, A.L., Microplastics in the marine environment, Marine Pollution Bulletin, 62 (8) (2011), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
  • Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, Sources, fate and effects of microplastics in the marine environment (Part 1), (2015), http://www.gesamp.org/publications/reports-and-studies-no-90 (accessed January 19, 2024).
  • Hernandez, E., Nowack, B., Mitrano, D.M., Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environmental Science & Technology, 51 (12) (2017), 7036-7046. https://doi.org/10.1021/acs.est.7b01750
  • Rezania, S., Park, J., Md Din, M.F., Mat Taib, S., Talaiekhozani, A., Kumar Yadav, K., Kamyab, H., Microplastics pollution in different aquatic environments and biota: A review of recent studies. Marine Pollution Bulletin, 133 (2018), 191–208. https://doi.org/10.1016/j.marpolbul.2018.05.022
  • Jiang, J.Q., Occurrence of microplastics and its pollution in the environment: A review. Sustainable Production and Consumption, 13 (2018), 16-23. https://doi.org/10.1016/j.spc.2017.11.003
  • Gong, J., Xie, P., Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere, 254 (2020), 126790. https://doi.org/10.1016/j.chemosphere.2020.126790
  • Helm, P.A., Improving microplastics source apportionment: A role for microplastic morphology and taxonomy?. Analytical Methods, 9 (9) (2017), 1328-1331. https://doi.org/10.1039/C7AY90016C
  • Lusher, A.L., Bråte, I.L.N., Munno, K., Hurley, R.R., Welden, N.A., Is it or isn’t it: The importance of visual classification in microplastic characterization. Applied Spectroscopy, 74 (9) (2020), 1139-1153. https://doi.org/10.1177/0003702820930733
  • Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology, 46 (6) (2012), 3060-3075. https://doi.org/10.1021/es2031505
  • Ngo, P.L., Pramanik, B.K., Shah, K., Roychand, R., Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environmental Pollution, 255 (2019), 113326. https://doi.org/10.1016/j.envpol.2019.113326
  • Napper, I.E., Thompson, R.C., plastic debris in the marine environment: history and future challenges. Global Challenges, 4 (6) (2020), 1900081. https://doi.org/10.1002/gch2.201900081
  • Pan, Z., Guo, H., Chen, H., Wang, S., Sun, X., Zou, Q., Zhang, Y., Lin, H., Cai, S., Huang, J., Microplastics in the Northwestern Pacific: Abundance, distribution, and characteristics. Science of The Total Environment, 650 (2019), 1913-1922. https://doi.org/10.1016/j.scitotenv.2018.09.244
  • Nel, H.A., Dalu, T., Wasserman, R.J., Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. Science of The Total Environment, 612 (2018), 950-956. https://doi.org/10.1016/j.scitotenv.2017.08.298
  • Szymańska, M., Obolewski, K., Microplastics as contaminants in freshwater environments: A multidisciplinary review. Ecohydrology & Hydrobiology, 20 (3) (2020), 333-345. https://doi.org/10.1016/j.ecohyd.2020.05.001
  • Fahrenfeld, N.L., Arbuckle-Keil, G., Naderi Beni, N., Bartelt-Hunt, S.L., Source tracking microplastics in the freshwater environment. TrAC Trends in Analytical Chemistry, 112 (2019), 248-254. https://doi.org/10.1016/j.trac.2018.11.030
  • Islam, M.S., Rahman, Md.M., Larpruenrudee, P., Arsalanloo, A., Beni, H.M., Islam, Md.A., Gu, Y., Sauret, E., How microplastics are transported and deposited in realistic upper airways?. Physics of Fluids, 35 (6) (2023), 063319. https://doi.org/10.1063/5.0150703
  • da Costa Araújo, A.P., de Andrade Vieira, J.E., Malafaia, G., Toxicity and trophic transfer of polyethylene microplastics from Poecilia reticulata to Danio rerio. Science of The Total Environment, 742 (2020), 140217. https://doi.org/10.1016/j.scitotenv.2020.140217
  • Lusher, A.L., Tirelli, V., O’Connor, I., Officer, R., Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Scientific Reports, 5 (1) (2015), 14947. https://doi.org/10.1038/srep14947
  • Miranda, T., Vieira, L.R., Guilhermino, L., Neurotoxicity, behavior, and lethal effects of Cadmium, microplastics, and their mixtures on Pomatoschistus microps juveniles from two wild populations exposed under laboratory conditions-implications to environmental and human risk assessment. International Journal of Environmental Research and Public Health, 16 (16) (2019), 2857. https://doi.org/10.3390/ijerph16162857
  • Ribeiro, F., O’Brien, J.W., Galloway, T., Thomas, K.V., Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. TrAC Trends in Analytical Chemistry, 111 (2019), 139-147. https://doi.org/10.1016/j.trac.2018.12.010
  • Wang, F., Yang, W., Cheng, P., Zhang, S., Zhang, S., Jiao, W., Sun, Y., Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere, 235 (2019), 1073-1080. https://doi.org/10.1016/j.chemosphere.2019.06.196
  • Lozano, Y.M., Lehnert, T., Linck, L.T., Lehmann, A., Rillig, M.C., Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science, 12 (2021), https://doi.org/10.3389/fpls.2021.616645
  • Lehel, J., Murphy, S., Microplastics in the Food Chain: Food Safety and Environmental Aspects. In: de Voogt, P. Editor, Reviews of Environmental Contamination and Toxicology. Springer International Publishing, Cham, (2021), 1-49. https://doi.org/10.1007/398_2021_77
  • Brandts, I., Teles, M., Gonçalves, A.P., Barreto, A., Franco-Martinez, L., Tvarijonaviciute, A., Martins, M.A., Soares, A.M.V.M., Tort, L., Oliveira, M., Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Science of The Total Environment, 643 (2018), 775-784. https://doi.org/10.1016/j.scitotenv.2018.06.257
  • Ribeiro, F., Garcia, A.R., Pereira, B.P., Fonseca, M., Mestre, N.C., Fonseca, T.G., Ilharco, L.M., Bebianno, M.J., Microplastics effects in Scrobicularia plana. Marine Pollution Bulletin, 122 (1) (2017), 379-391. https://doi.org/10.1016/j.marpolbul.2017.06.078
  • Wan, Z., Wang, C., Zhou, J., Shen, M., Wang, X., Fu, Z., Jin, Y., Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere, 217 (2019), 646-658. https://doi.org/10.1016/j.chemosphere.2018.11.070
  • Gray, A.D., Weinstein, J.E., Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio). Environmental Toxicology and Chemistry, 36 (11) (2017), 3074-3080. https://doi.org/10.1002/etc.3881
  • Gasperi, J., Wright, S.L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F.J., Tassin, B., Microplastics in air: Are we breathing it in?. Current Opinion in Environmental Science & Health, 1 (2018), 1-5. https://doi.org/10.1016/j.coesh.2017.10.002
  • Xu, S., Ma, J., Ji, R., Pan, K., Miao, A.J., Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Science of The Total Environment, 703 (2020), 134699. https://doi.org/10.1016/j.scitotenv.2019.134699
  • Wang, F., Wong, C.S., Chen, D., Lu, X., Wang, F., Zeng, E.Y., Interaction of toxic chemicals with microplastics: A critical review. Water Research, 139 (2018), 208-219. https://doi.org/10.1016/j.watres.2018.04.003
  • Patterson, J., Jeyasanta, K.I., Sathish, N., Edward, J.K.P., Booth, A.M., Microplastic and heavy metal distributions in an Indian coral reef ecosystem. Science of The Total Environment, 744 (2020), 140706. https://doi.org/10.1016/j.scitotenv.2020.140706
  • Rai, P.K., Sonne, C., Brown, R.J.C., Younis, S.A., Kim, K.-H., Adsorption of environmental contaminants on micro- and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes. Journal of Hazardous Materials, 427 (2022), 127903. https://doi.org/10.1016/j.jhazmat.2021.127903
  • Rochman, C.M., Hentschel, B.T., Teh, S.J., Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments. PLoS One, 9 (1) (2014), e85433. https://doi.org/10.1371/journal.pone.0085433
  • Koelmans, A.A., Bakir, A., Burton, G.A., Janssen, C.R., Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environmental Science & Technology, 50 (7) (2016), 3315–3326. https://doi.org/10.1021/acs.est.5b06069
  • Pathak, S., Agarwal, A.V., Pandey, V.C., Phytoremediation-a holistic approach for remediation of heavy metals and metalloids. In: Pandey, V.C., Singh, V. Editors. Bioremediation of Pollutants. Elsevier, (2020), 3-16. https://doi.org/10.1016/B978-0-12-819025-8.00001-6
  • Baby, J., Raj, J.S., Biby, E.T., Sankarganesh, P., Jeevitha, M.V., Ajisha, S.U., Rajan, S.S., Toxic effect of heavy metals on aquatic environment. International Journal of Biological and Chemical Sciences, 4 (4) (2010). https://doi.org/10.4314/ijbcs.v4i4.62976
  • Singh, A., Sharma, A., Verma, R.K., Chopade, R.L., Pandit, P.P., Nagar, V. et al., Heavy metal contamination of water and their toxic effect on living organisms, The Toxicity of Environmental Pollutants, IntechOpen, (2022). https://doi.org/10.5772/intechopen.105075
  • Kamran, S., Shafaqat, A., Samra, H., Sana, A., Samar, F., Muhammad, B. S., et al., Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental Management and Public Safety, 2 (2013), 172-179. https://doi.org/10.15580/gjemps.2013.4.060413652
  • Velusamy, S., Roy, A., Sundaram, S., Kumar Mallick, T., A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. The Chemical Record, 21 (7) (2021), 1570-1610. https://doi.org/10.1002/tcr.202000153
  • Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., Heavy Metal Toxicity and the Environment. In: Luch, A. Editor. Molecular, Clinical and Environmental Toxicology, Springer, Basel, (2012) 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6
  • Araya, M., Olivares, M., Pizarro, F., González, M., Speisky, H., Uauy, R., Gastrointestinal symptoms and blood indicators of copper load in apparently healthy adults undergoing controlled copper exposure. The American Journal of Clinical Nutrition, 77 (3) (2003), 646-650. https://doi.org/10.1093/ajcn/77.3.646
  • Madsen, E., Gitlin, J.D., Copper and iron disorders of the brain. Annual Review of Neuroscience, 30 (1) (2007), 317-337. https://doi.org/10.1146/annurev.neuro.30.051606.094232
  • Chang, L.W., Magos, L., Suzuki, T., Toxicology of metals, Lewis Publishers, Boca Raton, 1996. http://catdir.loc.gov/catdir/enhancements/fy0744/95042586-d.html (accessed January 20, 2024)
  • Beyersmann, D., Hartwig, A., Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of Toxicology, 82 (8) (2008), 493-512. https://doi.org/10.1007/s00204-008-0313-y
  • Cao, Y., Zhao, M., Ma, X., Song, Y., Zuo, S., Li, H., Deng, W., A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Science of The Total Environment, 788 (2021), 147620. https://doi.org/10.1016/j.scitotenv.2021.147620
  • Ashton, K., Holmes, L., Turner, A., Association of metals with plastic production pellets in the marine environment. Marine Pollution Bulletin, 60 (11) (2010), 2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014
  • Santos-Echeandía, J., Rivera-Hernández, J.R., Rodrigues, J.P., Moltó, V., Interaction of mercury with beached plastics with special attention to zonation, degradation status and polymer type. Marine Chemistry, 222 (2020), 103788. https://doi.org/10.1016/j.marchem.2020.103788
  • Khalid, N., Aqeel, M., Noman, A., Khan, S.M., Akhter, N., Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environmental Pollution, 290 (2021), 118104. https://doi.org/10.1016/j.envpol.2021.118104
  • Torres, F.G., Dioses-Salinas, D.C., Pizarro-Ortega, C.I., De-la-Torre, G.E., Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Science of The Total Environment, 757 (2021), 143875. https://doi.org/10.1016/j.scitotenv.2020.143875
  • Brennecke, D., Duarte, B., Paiva, F., Caçador, I., Canning-Clode, J., Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178 (2016), 189-195. https://doi.org/10.1016/j.ecss.2015.12.003
  • Wang, Q., Zhang, Y., Wangjin, X., Wang, Y., Meng, G., Chen, Y., The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. Journal of Environmental Sciences, 87 (2020), 272-280. https://doi.org/10.1016/j.jes.2019.07.006
  • Lang, M., Yu, X., Liu, J., Xia, T., Wang, T., Jia, H., Guo, X., Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics. Science of The Total Environment, 722 (2020), 137762. https://doi.org/10.1016/j.scitotenv.2020.137762
  • Luo, H., Liu, C., He, D., Xu, J., Sun, J., Li, J., Pan, X., Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. Journal of Hazardous Materials, 423 (2022), 126915. https://doi.org/10.1016/j.jhazmat.2021.126915
  • Xue, X., Hong, S., Cheng, R., Li, H., Qiu, L., Fang, C., Adsorption characteristics of antibiotics on microplastics: The effect of surface contamination with an anionic surfactant. Chemosphere, 307 (2022), 136195. https://doi.org/10.1016/j.chemosphere.2022.136195
  • Purwiyanto, A.I.S., Suteja, Y., Trisno, Ningrum, P.S., Putri, W.A.E., Rozirwan, Agustriani, F., Fauziyah, Cordova, M.R., Koropitan, A.F., Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment. Marine Pollution Bulletin, 158 (2020), 111380. https://doi.org/10.1016/j.marpolbul.2020.111380
  • Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., Cai, L., Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere, 171 (2017), 248-258. https://doi.org/10.1016/j.chemosphere.2016.12.074
  • Liu, Y., Zhang, K., Xu, S., Yan, M., Tao, D., Chen, L., Wei, Y., Wu, C., Liu, G., Lam, P.K.S., Heavy metals in the “plastisphere” of marine microplastics: adsorption mechanisms and composite risk. Gondwana Research, 108 (2022), 171-180. https://doi.org/10.1016/j.gr.2021.06.017
  • Ta, A.T., Babel, S., Microplastic contamination on the lower Chao Phraya: Abundance, characteristic and interaction with heavy metals. Chemosphere, 257 (2020), 127234. https://doi.org/10.1016/j.chemosphere.2020.127234
  • Sarkar, D.J., Das Sarkar, S., Das, B.K., Sahoo, B.K., Das, A., Nag, S.K., Manna, R.K., Behera, B.K., Samanta, S., Occurrence, fate and removal of microplastics as heavy metal vector in natural wastewater treatment wetland system. Water Research, 192 (2021), 116853. https://doi.org/10.1016/j.watres.2021.116853
  • Selvam, S., Jesuraja, K., Venkatramanan, S., Roy, P.D., Jeyanthi Kumari, V., Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India. Journal of Hazardous Materials, 402 (2021), 123786. https://doi.org/10.1016/j.jhazmat.2020.123786
  • James Noik, V., Mohd. Tuah, P., Seng, L., Sakari, M., Fingerprinting and quantification of selected heavy metals in meso- and microplastics sampled from Santubong and Trombol Beach, Kuching, 2nd International Conference on Agriculture, Environment and Biological Sciences (ICAEBS'15), (2015). https://doi.org/10.17758/IAAST.A0715062
  • Imhof, H.K., Laforsch, C., Wiesheu, A.C., Schmid, J., Anger, P.M., Niessner, R., Ivleva, N.P., Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Research, 98 (2016), 64-74. https://doi.org/10.1016/j.watres.2016.03.015
  • Maršić-Lučić, J., Lušić, J., Tutman, P., Bojanić Varezić, D., Šiljić, J., Pribudić, J., Levels of trace metals on microplastic particles in beach sediments of the island of Vis, Adriatic Sea, Croatia. Marine Pollution Bulletin, 137 (2018), 231-236. https://doi.org/10.1016/j.marpolbul.2018.10.027
  • Dobaradaran, S., Schmidt, T.C., Nabipour, I., Khajeahmadi, N., Tajbakhsh, S., Saeedi, R., Javad Mohammadi, M., Keshtkar, M., Khorsand, M., Faraji Ghasemi, F., Characterization of plastic debris and association of metals with microplastics in coastline sediment along the Persian Gulf. Waste Management, 78 (2018), 649-658. https://doi.org/10.1016/j.wasman.2018.06.037
  • Vedolin, M.C., Teophilo, C.Y.S., Turra, A., Figueira, R.C.L., Spatial variability in the concentrations of metals in beached microplastics. Marine Pollution Bulletin, 129 (2) (2018), 487-493. https://doi.org/10.1016/j.marpolbul.2017.10.019
  • Li, W., Lo, H.S., Wong, H.M., Zhou, M., Wong, C.Y., Tam, N.F.Y., Cheung, S.-G., Heavy metals contamination of sedimentary microplastics in Hong Kong. Marine Pollution Bulletin, 153 (2020), 110977. https://doi.org/10.1016/j.marpolbul.2020.110977
  • Deng, J., Guo, P., Zhang, X., Su, H., Zhang, Y., Wu, Y., Li, Y., Microplastics and accumulated heavy metals in restored mangrove wetland surface sediments at Jinjiang Estuary (Fujian, China). Marine Pollution Bulletin, 159 (2020), 111482. https://doi.org/10.1016/j.marpolbul.2020.111482
  • Xie, Q., Li, H.X., Lin, L., Li, Z.L., Huang, J., Xu, X.R., Characteristics of expanded polystyrene microplastics on island beaches in the Pearl River Estuary: abundance, size, surface texture and their metals-carrying capacity. Ecotoxicology, 30 (8) (2021), 1632-1643. https://doi.org/10.1007/s10646-020-02329-7
  • Chen, X., Ali, S., Yuan, L., Guo, F., Huang, G., Shi, W., Chen, X., Characterization and source analysis of heavy metals contamination in microplastics by laser-induced breakdown spectroscopy. Chemosphere, 287 (2022), 132172. https://doi.org/10.1016/j.chemosphere.2021.132172
  • Gao, F., Li, J., Sun, C., Zhang, L., Jiang, F., Cao, W., Zheng, L., Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Marine Pollution Bulletin, 144 (2019), 61-67. https://doi.org/10.1016/j.marpolbul.2019.04.039
  • Liu, F., Liu, G., Zhu, Z., Wang, S., Zhao, F., Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere, 214 (2019), 688-694. https://doi.org/10.1016/j.chemosphere.2018.09.174
  • Yang, J., Cang, L., Sun, Q., Dong, G., Ata-Ul-Karim, S.T., Zhou, D., Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics. Environmental Science and Pollution Research, 26 (22) (2019), 23027-23036. https://doi.org/10.1007/s11356-019-05643-8
  • Liu, P., Qian, L., Wang, H., Zhan, X., Lu, K., Gu, C., Gao, S., new insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environmental Science & Technology, 53 (7) (2019), 3579-3588. https://doi.org/10.1021/acs.est.9b00493
  • Dong, Y., Gao, M., Song, Z., Qiu, W., As(III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere, 239 (2020), 124792. https://doi.org/10.1016/j.chemosphere.2019.124792
  • Johansen, M.P., Prentice, E., Cresswell, T., Howell, N., Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm. Journal of Environmental Radioactivity, 190–191 (2018), 130-133. https://doi.org/10.1016/j.jenvrad.2018.05.001
  • Dong, Y., Gao, M., Song, Z., Qiu, W., Adsorption mechanism of As(III) on polytetrafluoroethylene particles of different size. Environmental Pollution, 254 (2019), 112950. https://doi.org/10.1016/j.envpol.2019.07.118
  • Godoy, V., Blázquez, G., Calero, M., Quesada, L., Martín-Lara, M.A., The potential of microplastics as carriers of metals. Environmental Pollution, 255 (2019), 113363. https://doi.org/10.1016/j.envpol.2019.113363
  • Guo, X., Wang, J., The phenomenological mass transfer kinetics model for Sr2+ sorption onto spheroids primary microplastics. Environmental Pollution, 250 (2019), 737-745. https://doi.org/10.1016/j.envpol.2019.04.091
  • Wang, F., Yang, W., Cheng, P., Zhang, S., Zhang, S., Jiao, W., Sun, Y., Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere, 235 (2019), 1073-1080. https://doi.org/10.1016/j.chemosphere.2019.06.196
  • Fu, Q., Tan, X., Ye, S., Ma, L., Gu, Y., Zhang, P., Chen, Q., Yang, Y., Tang, Y., Mechanism analysis of heavy metal lead captured by natural-aged microplastics. Chemosphere, 270 (2021), 128624. https://doi.org/10.1016/j.chemosphere.2020.128624
  • Guo, X., Hu, G., Fan, X., Jia, H., Sorption properties of cadmium on microplastics: The common practice experiment and A two-dimensional correlation spectroscopic study. Ecotoxicology and Environmental Safety, 190 (2020), 110118. https://doi.org/10.1016/j.ecoenv.2019.110118
  • Guo, X., Liu, Y., Wang, J., Equilibrium, kinetics and molecular dynamic modeling of Sr2+ sorption onto microplastics. Journal of Hazardous Materials, 400 (2020), 123324. https://doi.org/10.1016/j.jhazmat.2020.123324
  • Huang, X., Zemlyanov, D.Y., Diaz-Amaya, S., Salehi, M., Stanciu, L., Whelton, A.J., Competitive heavy metal adsorption onto new and aged polyethylene under various drinking water conditions. Journal of Hazardous Materials, 385 (2020), 121585. https://doi.org/10.1016/j.jhazmat.2019.121585
  • Mao, R., Lang, M., Yu, X., Wu, R., Yang, X., Guo, X., Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of Hazardous Materials, 393 (2020), 122515. https://doi.org/10.1016/j.jhazmat.2020.122515
  • Wang, Y., Wang, X., Li, Y., Li, J., Wang, F., Xia, S., Zhao, J., Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics. Chemical Engineering Journal, 392 (2020), 123808. https://doi.org/10.1016/j.cej.2019.123808
  • Zhou, Y., Yang, Y., Liu, G., He, G., Liu, W., Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. Water Research, 184 (2020), 116209. https://doi.org/10.1016/j.watres.2020.116209
  • Zou, J., Liu, X., Zhang, D., Yuan, X., Adsorption of three bivalent metals by four chemical distinct microplastics. Chemosphere, 248 (2020), 126064. https://doi.org/10.1016/j.chemosphere.2020.126064
  • Barus, B.S., Chen, K., Cai, M., Li, R., Chen, H., Li, C., Wang, J., Cheng, S.-Y., Heavy metal adsorption and release on polystyrene particles at various salinities. Frontiers in Marine Science, 8 (2021). https://doi.org/10.3389/fmars.2021.671802
  • Shen, M., Song, B., Zeng, G., Zhang, Y., Teng, F., Zhou, C., Surfactant changes lead adsorption behaviors and mechanisms on microplastics. Chemical Engineering Journal, 405 (2021), 126989. https://doi.org/10.1016/j.cej.2020.126989
  • Bao, R., Fu, D., Fan, Z., Peng, X., Peng, L., Aging of microplastics and their role as vector for copper in aqueous solution. Gondwana Research, 108 (2022), 81-90. https://doi.org/10.1016/j.gr.2021.12.002
  • Fotopoulou, K.N., Karapanagioti, H.K., Surface properties of beached plastics. Environmental Science and Pollution Research, 22 (14) (2015), 11022-11032. https://doi.org/10.1007/s11356-015-4332-y
  • Enyoh, C.E., Wang, Q., Eze, V.C., Rabin, M.H., Rakib, Md.R.J., Verla, A.W., Ibe, F.C., Duru, C.E., Verla, E.N., Assessment of potentially toxic metals adsorbed on small macroplastics in urban roadside soils in southeastern Nigeria. Journal of Hazardous Materials Advances, 7 (2022), 100122. https://doi.org/10.1016/j.hazadv.2022.100122
  • Naqash, N., Prakash, S., Kapoor, D., Singh, R., Interaction of freshwater microplastics with biota and heavy metals: a review. Environmental Chemistry Letters, 18 (6) (2020), 1813-1824. https://doi.org/10.1007/s10311-020-01044-3
  • Wang, X., Zhang, R., Li, Z., Yan, B., Adsorption properties and influencing factors of Cu(II) on polystyrene and polyethylene terephthalate microplastics in seawater. Science of the Total Environment, 812 (2022), 152573. https://doi.org/10.1016/j.scitotenv.2021.152573
  • Guo, X., Wang, X., Zhou, X., Kong, X., Tao, S., Xing, B., Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition. Environmental Science & Technology, 46 (13) (2012), 7252-7259. https://doi.org/10.1021/es301386z
  • Li, X., Mei, Q., Chen, L., Zhang, H., Dong, B., Dai, X., He, C., Zhou, J., Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Research, 157 (2019), 228-237. https://doi.org/10.1016/j.watres.2019.03.069
  • Wang, L., Guo, C., Qian, Q., Lang, D., Wu, R., Abliz, S., Wang, W., Wang, J., Adsorption behavior of UV aged microplastics on the heavy metals Pb(II) and Cu(II) in aqueous solutions. Chemosphere, 313 (2023), 137439. https://doi.org/10.1016/j.chemosphere.2022.137439
  • Park, C.M., Han, J., Chu, K.H., Al-Hamadani, Y.A.J., Her, N., Heo, J., Yoon, Y., Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar: Experiment and modeling. Journal of Industrial and Engineering Chemistry, 48 (2017), 186-193. https://doi.org/10.1016/j.jiec.2016.12.038
  • Li, J., Miao, X., Chen, X., Lu, L., Yang, Y., Fu, Y., Xiong, C., Application and characterization of grafted polytetrafluoroethylene fiber for enhanced adsorption of Cu(II) in aqueous solutions. Journal of Central South University, 23 (10) (2016), 2513-2519. https://doi.org/10.1007/s11771-016-3311-x
  • Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S., Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99 (2014), 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071
  • Li, Y., Zhang, Y., Su, F., Wang, Y., Peng, L., Liu, D., Adsorption behaviour of microplastics on the heavy metal Cr(VI) before and after ageing. Chemosphere, 302 (2022), 134865. https://doi.org/10.1016/j.chemosphere.2022.134865
  • Li, Y., Zhang, Y., Su, F., Wang, Y., Peng, L., Liu, D., Adsorption behaviour of microplastics on the heavy metal Cr(VI) before and after ageing. Chemosphere, 302 (2022), 134865. https://doi.org/10.1016/j.chemosphere.2022.134865
  • Alimi, O.S., Farner Budarz, J., Hernandez, L.M., Tufenkji, N., Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52 (4) (2018), 1704-1724. https://doi.org/10.1021/acs.est.7b05559
  • Richard, H., Carpenter, E.J., Komada, T., Palmer, P.T., Rochman, C.M., Biofilm facilitates metal accumulation onto microplastics in estuarine waters. Science of the Total Environment, 683 (2019), 600-608. https://doi.org/10.1016/j.scitotenv.2019.04.331
  • Liu, Z., Adyel, T.M., Miao, L., You, G., Liu, S., Hou, J., Biofilm influenced metal accumulation onto plastic debris in different freshwaters. Environmental Pollution, 285 (2021), 117646. https://doi.org/10.1016/j.envpol.2021.117646
  • Guan, J., Qi, K., Wang, J., Wang, W., Wang, Z., Lu, N., Qu, J., Microplastics as an emerging anthropogenic vector of trace metals in freshwater: Significance of biofilms and comparison with natural substrates. Water Research, 184 (2020), 116205. https://doi.org/10.1016/j.watres.2020.116205
  • Qi, K., Lu, N., Zhang, S., Wang, W., Wang, Z., Guan, J., Uptake of Pb(II) onto microplastic-associated biofilms in freshwater: Adsorption and combined toxicity in comparison to natural solid substrates. Journal of Hazardous Materials, 411 (2021), 125115. https://doi.org/10.1016/j.jhazmat.2021.125115
  • Sun, Y., Wang, X., Xia, S., Zhao, J., Cu(II) adsorption on poly(Lactic Acid) microplastics: Significance of microbial colonization and degradation. Chemical Engineering Journal, 429 (2022), 132306. https://doi.org/10.1016/j.cej.2021.132306
  • Prunier, J., Maurice, L., Perez, E., Gigault, J., Pierson Wickmann, A.-C., Davranche, M., Halle, A. ter, Trace metals in polyethylene debris from the North Atlantic subtropical gyre. Environmental Pollution, 245 (2019), 371-379. https://doi.org/10.1016/j.envpol.2018.10.043
  • Qiongjie, W., Yong, Z., Yangyang, Z., Zhouqi, L., Jinxiaoxue, W., Huijuan, C., Effects of biofilm on metal adsorption behavior and microbial community of microplastics. Journal of Hazardous Materials, 424 (2022), 127340. https://doi.org/10.1016/j.jhazmat.2021.127340
  • Abdurahman, A., Cui, K., Wu, J., Li, S., Gao, R., Dai, J., Liang, W., Zeng, F., Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis. Ecotoxicology and Environmental Safety, 198 (2020), 110658. https://doi.org/10.1016/j.ecoenv.2020.110658
  • Daugherty, M., Conte, M., Weber, J. C., Adsorption of organic pollutants to microplastics: the effects of dissolved organic matter. Northwest University Semester Environmental Science, (2016) 1-27.
  • Lusher, A.L., McHugh, M., Thompson, R.C., Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin, 67 (1) (2013), 94-99. https://doi.org/10.1016/j.marpolbul.2012.11.028
  • Smith, M., Love, D.C., Rochman, C.M., Neff, R.A., Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5 (3) (2018), 375-386. https://doi.org/10.1007/s40572-018-0206-z
  • Ribeiro, F., O’Brien, J.W., Galloway, T., Thomas, K.V., Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. TrAC Trends in Analytical Chemistry, 111 (2019), 139-147. https://doi.org/10.1016/j.trac.2018.12.010
  • Hildebrandt, L., Nack, F.L., Zimmermann, T., Pröfrock, D., Microplastics as a Trojan horse for trace metals. Journal of Hazardous Materials Letters, 2 (2021), 100035. https://doi.org/10.1016/j.hazl.2021.100035
  • Zhao, W.G., Tian, Y.M., Zhao, P., Zhao, L.A., Jin, C., Research progress on trojan-horse effect of microplastics and heavy metals in freshwater environment. Huan Jing Ke Xue = Huanjing Kexue, 44 (3) (2023), 1244-1257. https://doi.org/10.13227/j.hjkx.202202118
Year 2024, Volume: 33 Issue: 2, 162 - 193, 25.12.2024
https://doi.org/10.53447/communc.1423616

Abstract

References

  • Petersen, F., Hubbart, J.A., The occurrence and transport of microplastics: The state of the science. Science of The Total Environment, 758 (2021), 143936. https://doi.org/10.1016/j.scitotenv.2020.143936
  • Leal Filho, W., Saari, U., Fedoruk, M., Iital, A., Moora, H., Klöga, M., Voronova, V., An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. Journal of Cleaner Production, 214 (2019), 550–558. https://doi.org/10.1016/j.jclepro.2018.12.256
  • Wang, J., Tan, Z., Peng, J., Qiu, Q., Li, M., The behaviors of microplastics in the marine environment. Marine Environmental Research, 113 (2016), 7-17. https://doi.org/10.1016/j.marenvres.2015.10.014
  • Geyer, R., Jambeck, J.R., Law, K.L., Production, use, and fate of all plastics ever made. Science Advances, 3 (7) (2017), e1700782. https://doi.org/10.1126/sciadv.1700782
  • Plastics Europe, Plastics - The Facts 2017: An analysis of European plastics production, demand and waste data, (2017). Retrieved from https://plasticseurope.org/wp-content/uploads/2021/10/2017-Plastics-the-facts.pdf (accessed 13.04.2023).
  • Plastics Europe, Plastics - The Facts 2022: An analysis of European plastics production, demand, conversion and end-of-life management, (2022). Retrieved from https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed 13.04.2023).
  • Schwarz, A.E., Ligthart, T.N., Boukris, E., van Harmelen, T., Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study. Marine Pollution Bulletin, 143 (2019), 92-100. https://doi.org/10.1016/j.marpolbul.2019.04.029
  • Borrelle, S.B., Ringma, J., Law, K.L., Monnahan, C.C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G.H., Hilleary, M.A., Eriksen, M., Possingham, H.P., De Frond, H., Gerber, L.R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M., Rochman, C.M., Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369 (6510) (2020), 1515-1518. https://doi.org/10.1126/science.aba3656
  • Hoellein, T., Rojas, M., Pink, A., Gasior, J., Kelly, J., Anthropogenic litter in urban freshwater ecosystems: Distribution and microbial interactions. PLoS One, 9 (6) (2014), e98485. https://doi.org/10.1371/journal.pone.0098485
  • Nassouhi̇, D., Ergönül, M.B., Fi̇ki̇rdeşi̇ci̇, Ş., Karacakaya, P., Atasağun, S., Ağır metal kirliliğinin biyoremediasyonunda sucul makrofitlerin kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14 (2) (2018), 148-165. https://doi.org/10.22392/egirdir.371340
  • Zhang, Q., Chen, Z., Li, Y., Wang, P., Zhu, C., Gao, G., Xiao, K., Sun, H., Zheng, S., Liang, Y., Jiang, G., Occurrence of organochlorine pesticides in the environmental matrices from King George Island, west Antarctica. Environmental Pollution, 206 (2015), 142-149. https://doi.org/10.1016/j.envpol.2015.06.025
  • Ergönül, M.B., Nassouhi, D., Çelik, M., Dilbaz, D., Sazlı, D., Atasağun, S., Lemna trisulca L.: a novel phytoremediator for the removal of zinc oxide nanoparticles (ZnO NP) from aqueous media. Environmental Science and Pollution Research, 29 (60) (2022), 90852-90867. https://doi.org/10.1007/s11356-022-22112-x
  • Sazlı, D., Nassouhi, D., Ergönül, M., Atasağun, S., A comprehensive review on microplastic pollution in aquatic ecosystems and their effects on aquatic biota. Aquatic Sciences and Engineering, 38 (1) (2023), 12-46. https://doi.org/10.26650/ASE20221186783
  • Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., Plastic waste inputs from land into the ocean. Science, 347 (6223) (2015), 768–771. https://doi.org/10.1126/science.1260352
  • Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L., Suh, S., Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8 (9) (2020), 3494-3511. https://doi.org/10.1021/acssuschemeng.9b06635
  • Ward, C.P., Reddy, C.M., We need better data about the environmental persistence of plastic goods. PNAS, (2020). https://doi.org/10.1073/pnas.2008009117
  • Andrady, A.L., Microplastics in the marine environment, Marine Pollution Bulletin, 62 (8) (2011), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
  • Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, Sources, fate and effects of microplastics in the marine environment (Part 1), (2015), http://www.gesamp.org/publications/reports-and-studies-no-90 (accessed January 19, 2024).
  • Hernandez, E., Nowack, B., Mitrano, D.M., Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environmental Science & Technology, 51 (12) (2017), 7036-7046. https://doi.org/10.1021/acs.est.7b01750
  • Rezania, S., Park, J., Md Din, M.F., Mat Taib, S., Talaiekhozani, A., Kumar Yadav, K., Kamyab, H., Microplastics pollution in different aquatic environments and biota: A review of recent studies. Marine Pollution Bulletin, 133 (2018), 191–208. https://doi.org/10.1016/j.marpolbul.2018.05.022
  • Jiang, J.Q., Occurrence of microplastics and its pollution in the environment: A review. Sustainable Production and Consumption, 13 (2018), 16-23. https://doi.org/10.1016/j.spc.2017.11.003
  • Gong, J., Xie, P., Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere, 254 (2020), 126790. https://doi.org/10.1016/j.chemosphere.2020.126790
  • Helm, P.A., Improving microplastics source apportionment: A role for microplastic morphology and taxonomy?. Analytical Methods, 9 (9) (2017), 1328-1331. https://doi.org/10.1039/C7AY90016C
  • Lusher, A.L., Bråte, I.L.N., Munno, K., Hurley, R.R., Welden, N.A., Is it or isn’t it: The importance of visual classification in microplastic characterization. Applied Spectroscopy, 74 (9) (2020), 1139-1153. https://doi.org/10.1177/0003702820930733
  • Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology, 46 (6) (2012), 3060-3075. https://doi.org/10.1021/es2031505
  • Ngo, P.L., Pramanik, B.K., Shah, K., Roychand, R., Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environmental Pollution, 255 (2019), 113326. https://doi.org/10.1016/j.envpol.2019.113326
  • Napper, I.E., Thompson, R.C., plastic debris in the marine environment: history and future challenges. Global Challenges, 4 (6) (2020), 1900081. https://doi.org/10.1002/gch2.201900081
  • Pan, Z., Guo, H., Chen, H., Wang, S., Sun, X., Zou, Q., Zhang, Y., Lin, H., Cai, S., Huang, J., Microplastics in the Northwestern Pacific: Abundance, distribution, and characteristics. Science of The Total Environment, 650 (2019), 1913-1922. https://doi.org/10.1016/j.scitotenv.2018.09.244
  • Nel, H.A., Dalu, T., Wasserman, R.J., Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. Science of The Total Environment, 612 (2018), 950-956. https://doi.org/10.1016/j.scitotenv.2017.08.298
  • Szymańska, M., Obolewski, K., Microplastics as contaminants in freshwater environments: A multidisciplinary review. Ecohydrology & Hydrobiology, 20 (3) (2020), 333-345. https://doi.org/10.1016/j.ecohyd.2020.05.001
  • Fahrenfeld, N.L., Arbuckle-Keil, G., Naderi Beni, N., Bartelt-Hunt, S.L., Source tracking microplastics in the freshwater environment. TrAC Trends in Analytical Chemistry, 112 (2019), 248-254. https://doi.org/10.1016/j.trac.2018.11.030
  • Islam, M.S., Rahman, Md.M., Larpruenrudee, P., Arsalanloo, A., Beni, H.M., Islam, Md.A., Gu, Y., Sauret, E., How microplastics are transported and deposited in realistic upper airways?. Physics of Fluids, 35 (6) (2023), 063319. https://doi.org/10.1063/5.0150703
  • da Costa Araújo, A.P., de Andrade Vieira, J.E., Malafaia, G., Toxicity and trophic transfer of polyethylene microplastics from Poecilia reticulata to Danio rerio. Science of The Total Environment, 742 (2020), 140217. https://doi.org/10.1016/j.scitotenv.2020.140217
  • Lusher, A.L., Tirelli, V., O’Connor, I., Officer, R., Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Scientific Reports, 5 (1) (2015), 14947. https://doi.org/10.1038/srep14947
  • Miranda, T., Vieira, L.R., Guilhermino, L., Neurotoxicity, behavior, and lethal effects of Cadmium, microplastics, and their mixtures on Pomatoschistus microps juveniles from two wild populations exposed under laboratory conditions-implications to environmental and human risk assessment. International Journal of Environmental Research and Public Health, 16 (16) (2019), 2857. https://doi.org/10.3390/ijerph16162857
  • Ribeiro, F., O’Brien, J.W., Galloway, T., Thomas, K.V., Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. TrAC Trends in Analytical Chemistry, 111 (2019), 139-147. https://doi.org/10.1016/j.trac.2018.12.010
  • Wang, F., Yang, W., Cheng, P., Zhang, S., Zhang, S., Jiao, W., Sun, Y., Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere, 235 (2019), 1073-1080. https://doi.org/10.1016/j.chemosphere.2019.06.196
  • Lozano, Y.M., Lehnert, T., Linck, L.T., Lehmann, A., Rillig, M.C., Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science, 12 (2021), https://doi.org/10.3389/fpls.2021.616645
  • Lehel, J., Murphy, S., Microplastics in the Food Chain: Food Safety and Environmental Aspects. In: de Voogt, P. Editor, Reviews of Environmental Contamination and Toxicology. Springer International Publishing, Cham, (2021), 1-49. https://doi.org/10.1007/398_2021_77
  • Brandts, I., Teles, M., Gonçalves, A.P., Barreto, A., Franco-Martinez, L., Tvarijonaviciute, A., Martins, M.A., Soares, A.M.V.M., Tort, L., Oliveira, M., Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Science of The Total Environment, 643 (2018), 775-784. https://doi.org/10.1016/j.scitotenv.2018.06.257
  • Ribeiro, F., Garcia, A.R., Pereira, B.P., Fonseca, M., Mestre, N.C., Fonseca, T.G., Ilharco, L.M., Bebianno, M.J., Microplastics effects in Scrobicularia plana. Marine Pollution Bulletin, 122 (1) (2017), 379-391. https://doi.org/10.1016/j.marpolbul.2017.06.078
  • Wan, Z., Wang, C., Zhou, J., Shen, M., Wang, X., Fu, Z., Jin, Y., Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere, 217 (2019), 646-658. https://doi.org/10.1016/j.chemosphere.2018.11.070
  • Gray, A.D., Weinstein, J.E., Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio). Environmental Toxicology and Chemistry, 36 (11) (2017), 3074-3080. https://doi.org/10.1002/etc.3881
  • Gasperi, J., Wright, S.L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F.J., Tassin, B., Microplastics in air: Are we breathing it in?. Current Opinion in Environmental Science & Health, 1 (2018), 1-5. https://doi.org/10.1016/j.coesh.2017.10.002
  • Xu, S., Ma, J., Ji, R., Pan, K., Miao, A.J., Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Science of The Total Environment, 703 (2020), 134699. https://doi.org/10.1016/j.scitotenv.2019.134699
  • Wang, F., Wong, C.S., Chen, D., Lu, X., Wang, F., Zeng, E.Y., Interaction of toxic chemicals with microplastics: A critical review. Water Research, 139 (2018), 208-219. https://doi.org/10.1016/j.watres.2018.04.003
  • Patterson, J., Jeyasanta, K.I., Sathish, N., Edward, J.K.P., Booth, A.M., Microplastic and heavy metal distributions in an Indian coral reef ecosystem. Science of The Total Environment, 744 (2020), 140706. https://doi.org/10.1016/j.scitotenv.2020.140706
  • Rai, P.K., Sonne, C., Brown, R.J.C., Younis, S.A., Kim, K.-H., Adsorption of environmental contaminants on micro- and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes. Journal of Hazardous Materials, 427 (2022), 127903. https://doi.org/10.1016/j.jhazmat.2021.127903
  • Rochman, C.M., Hentschel, B.T., Teh, S.J., Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments. PLoS One, 9 (1) (2014), e85433. https://doi.org/10.1371/journal.pone.0085433
  • Koelmans, A.A., Bakir, A., Burton, G.A., Janssen, C.R., Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environmental Science & Technology, 50 (7) (2016), 3315–3326. https://doi.org/10.1021/acs.est.5b06069
  • Pathak, S., Agarwal, A.V., Pandey, V.C., Phytoremediation-a holistic approach for remediation of heavy metals and metalloids. In: Pandey, V.C., Singh, V. Editors. Bioremediation of Pollutants. Elsevier, (2020), 3-16. https://doi.org/10.1016/B978-0-12-819025-8.00001-6
  • Baby, J., Raj, J.S., Biby, E.T., Sankarganesh, P., Jeevitha, M.V., Ajisha, S.U., Rajan, S.S., Toxic effect of heavy metals on aquatic environment. International Journal of Biological and Chemical Sciences, 4 (4) (2010). https://doi.org/10.4314/ijbcs.v4i4.62976
  • Singh, A., Sharma, A., Verma, R.K., Chopade, R.L., Pandit, P.P., Nagar, V. et al., Heavy metal contamination of water and their toxic effect on living organisms, The Toxicity of Environmental Pollutants, IntechOpen, (2022). https://doi.org/10.5772/intechopen.105075
  • Kamran, S., Shafaqat, A., Samra, H., Sana, A., Samar, F., Muhammad, B. S., et al., Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental Management and Public Safety, 2 (2013), 172-179. https://doi.org/10.15580/gjemps.2013.4.060413652
  • Velusamy, S., Roy, A., Sundaram, S., Kumar Mallick, T., A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. The Chemical Record, 21 (7) (2021), 1570-1610. https://doi.org/10.1002/tcr.202000153
  • Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., Heavy Metal Toxicity and the Environment. In: Luch, A. Editor. Molecular, Clinical and Environmental Toxicology, Springer, Basel, (2012) 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6
  • Araya, M., Olivares, M., Pizarro, F., González, M., Speisky, H., Uauy, R., Gastrointestinal symptoms and blood indicators of copper load in apparently healthy adults undergoing controlled copper exposure. The American Journal of Clinical Nutrition, 77 (3) (2003), 646-650. https://doi.org/10.1093/ajcn/77.3.646
  • Madsen, E., Gitlin, J.D., Copper and iron disorders of the brain. Annual Review of Neuroscience, 30 (1) (2007), 317-337. https://doi.org/10.1146/annurev.neuro.30.051606.094232
  • Chang, L.W., Magos, L., Suzuki, T., Toxicology of metals, Lewis Publishers, Boca Raton, 1996. http://catdir.loc.gov/catdir/enhancements/fy0744/95042586-d.html (accessed January 20, 2024)
  • Beyersmann, D., Hartwig, A., Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of Toxicology, 82 (8) (2008), 493-512. https://doi.org/10.1007/s00204-008-0313-y
  • Cao, Y., Zhao, M., Ma, X., Song, Y., Zuo, S., Li, H., Deng, W., A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Science of The Total Environment, 788 (2021), 147620. https://doi.org/10.1016/j.scitotenv.2021.147620
  • Ashton, K., Holmes, L., Turner, A., Association of metals with plastic production pellets in the marine environment. Marine Pollution Bulletin, 60 (11) (2010), 2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014
  • Santos-Echeandía, J., Rivera-Hernández, J.R., Rodrigues, J.P., Moltó, V., Interaction of mercury with beached plastics with special attention to zonation, degradation status and polymer type. Marine Chemistry, 222 (2020), 103788. https://doi.org/10.1016/j.marchem.2020.103788
  • Khalid, N., Aqeel, M., Noman, A., Khan, S.M., Akhter, N., Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environmental Pollution, 290 (2021), 118104. https://doi.org/10.1016/j.envpol.2021.118104
  • Torres, F.G., Dioses-Salinas, D.C., Pizarro-Ortega, C.I., De-la-Torre, G.E., Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Science of The Total Environment, 757 (2021), 143875. https://doi.org/10.1016/j.scitotenv.2020.143875
  • Brennecke, D., Duarte, B., Paiva, F., Caçador, I., Canning-Clode, J., Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178 (2016), 189-195. https://doi.org/10.1016/j.ecss.2015.12.003
  • Wang, Q., Zhang, Y., Wangjin, X., Wang, Y., Meng, G., Chen, Y., The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. Journal of Environmental Sciences, 87 (2020), 272-280. https://doi.org/10.1016/j.jes.2019.07.006
  • Lang, M., Yu, X., Liu, J., Xia, T., Wang, T., Jia, H., Guo, X., Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics. Science of The Total Environment, 722 (2020), 137762. https://doi.org/10.1016/j.scitotenv.2020.137762
  • Luo, H., Liu, C., He, D., Xu, J., Sun, J., Li, J., Pan, X., Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. Journal of Hazardous Materials, 423 (2022), 126915. https://doi.org/10.1016/j.jhazmat.2021.126915
  • Xue, X., Hong, S., Cheng, R., Li, H., Qiu, L., Fang, C., Adsorption characteristics of antibiotics on microplastics: The effect of surface contamination with an anionic surfactant. Chemosphere, 307 (2022), 136195. https://doi.org/10.1016/j.chemosphere.2022.136195
  • Purwiyanto, A.I.S., Suteja, Y., Trisno, Ningrum, P.S., Putri, W.A.E., Rozirwan, Agustriani, F., Fauziyah, Cordova, M.R., Koropitan, A.F., Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment. Marine Pollution Bulletin, 158 (2020), 111380. https://doi.org/10.1016/j.marpolbul.2020.111380
  • Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., Cai, L., Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere, 171 (2017), 248-258. https://doi.org/10.1016/j.chemosphere.2016.12.074
  • Liu, Y., Zhang, K., Xu, S., Yan, M., Tao, D., Chen, L., Wei, Y., Wu, C., Liu, G., Lam, P.K.S., Heavy metals in the “plastisphere” of marine microplastics: adsorption mechanisms and composite risk. Gondwana Research, 108 (2022), 171-180. https://doi.org/10.1016/j.gr.2021.06.017
  • Ta, A.T., Babel, S., Microplastic contamination on the lower Chao Phraya: Abundance, characteristic and interaction with heavy metals. Chemosphere, 257 (2020), 127234. https://doi.org/10.1016/j.chemosphere.2020.127234
  • Sarkar, D.J., Das Sarkar, S., Das, B.K., Sahoo, B.K., Das, A., Nag, S.K., Manna, R.K., Behera, B.K., Samanta, S., Occurrence, fate and removal of microplastics as heavy metal vector in natural wastewater treatment wetland system. Water Research, 192 (2021), 116853. https://doi.org/10.1016/j.watres.2021.116853
  • Selvam, S., Jesuraja, K., Venkatramanan, S., Roy, P.D., Jeyanthi Kumari, V., Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India. Journal of Hazardous Materials, 402 (2021), 123786. https://doi.org/10.1016/j.jhazmat.2020.123786
  • James Noik, V., Mohd. Tuah, P., Seng, L., Sakari, M., Fingerprinting and quantification of selected heavy metals in meso- and microplastics sampled from Santubong and Trombol Beach, Kuching, 2nd International Conference on Agriculture, Environment and Biological Sciences (ICAEBS'15), (2015). https://doi.org/10.17758/IAAST.A0715062
  • Imhof, H.K., Laforsch, C., Wiesheu, A.C., Schmid, J., Anger, P.M., Niessner, R., Ivleva, N.P., Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Research, 98 (2016), 64-74. https://doi.org/10.1016/j.watres.2016.03.015
  • Maršić-Lučić, J., Lušić, J., Tutman, P., Bojanić Varezić, D., Šiljić, J., Pribudić, J., Levels of trace metals on microplastic particles in beach sediments of the island of Vis, Adriatic Sea, Croatia. Marine Pollution Bulletin, 137 (2018), 231-236. https://doi.org/10.1016/j.marpolbul.2018.10.027
  • Dobaradaran, S., Schmidt, T.C., Nabipour, I., Khajeahmadi, N., Tajbakhsh, S., Saeedi, R., Javad Mohammadi, M., Keshtkar, M., Khorsand, M., Faraji Ghasemi, F., Characterization of plastic debris and association of metals with microplastics in coastline sediment along the Persian Gulf. Waste Management, 78 (2018), 649-658. https://doi.org/10.1016/j.wasman.2018.06.037
  • Vedolin, M.C., Teophilo, C.Y.S., Turra, A., Figueira, R.C.L., Spatial variability in the concentrations of metals in beached microplastics. Marine Pollution Bulletin, 129 (2) (2018), 487-493. https://doi.org/10.1016/j.marpolbul.2017.10.019
  • Li, W., Lo, H.S., Wong, H.M., Zhou, M., Wong, C.Y., Tam, N.F.Y., Cheung, S.-G., Heavy metals contamination of sedimentary microplastics in Hong Kong. Marine Pollution Bulletin, 153 (2020), 110977. https://doi.org/10.1016/j.marpolbul.2020.110977
  • Deng, J., Guo, P., Zhang, X., Su, H., Zhang, Y., Wu, Y., Li, Y., Microplastics and accumulated heavy metals in restored mangrove wetland surface sediments at Jinjiang Estuary (Fujian, China). Marine Pollution Bulletin, 159 (2020), 111482. https://doi.org/10.1016/j.marpolbul.2020.111482
  • Xie, Q., Li, H.X., Lin, L., Li, Z.L., Huang, J., Xu, X.R., Characteristics of expanded polystyrene microplastics on island beaches in the Pearl River Estuary: abundance, size, surface texture and their metals-carrying capacity. Ecotoxicology, 30 (8) (2021), 1632-1643. https://doi.org/10.1007/s10646-020-02329-7
  • Chen, X., Ali, S., Yuan, L., Guo, F., Huang, G., Shi, W., Chen, X., Characterization and source analysis of heavy metals contamination in microplastics by laser-induced breakdown spectroscopy. Chemosphere, 287 (2022), 132172. https://doi.org/10.1016/j.chemosphere.2021.132172
  • Gao, F., Li, J., Sun, C., Zhang, L., Jiang, F., Cao, W., Zheng, L., Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Marine Pollution Bulletin, 144 (2019), 61-67. https://doi.org/10.1016/j.marpolbul.2019.04.039
  • Liu, F., Liu, G., Zhu, Z., Wang, S., Zhao, F., Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere, 214 (2019), 688-694. https://doi.org/10.1016/j.chemosphere.2018.09.174
  • Yang, J., Cang, L., Sun, Q., Dong, G., Ata-Ul-Karim, S.T., Zhou, D., Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics. Environmental Science and Pollution Research, 26 (22) (2019), 23027-23036. https://doi.org/10.1007/s11356-019-05643-8
  • Liu, P., Qian, L., Wang, H., Zhan, X., Lu, K., Gu, C., Gao, S., new insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environmental Science & Technology, 53 (7) (2019), 3579-3588. https://doi.org/10.1021/acs.est.9b00493
  • Dong, Y., Gao, M., Song, Z., Qiu, W., As(III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere, 239 (2020), 124792. https://doi.org/10.1016/j.chemosphere.2019.124792
  • Johansen, M.P., Prentice, E., Cresswell, T., Howell, N., Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm. Journal of Environmental Radioactivity, 190–191 (2018), 130-133. https://doi.org/10.1016/j.jenvrad.2018.05.001
  • Dong, Y., Gao, M., Song, Z., Qiu, W., Adsorption mechanism of As(III) on polytetrafluoroethylene particles of different size. Environmental Pollution, 254 (2019), 112950. https://doi.org/10.1016/j.envpol.2019.07.118
  • Godoy, V., Blázquez, G., Calero, M., Quesada, L., Martín-Lara, M.A., The potential of microplastics as carriers of metals. Environmental Pollution, 255 (2019), 113363. https://doi.org/10.1016/j.envpol.2019.113363
  • Guo, X., Wang, J., The phenomenological mass transfer kinetics model for Sr2+ sorption onto spheroids primary microplastics. Environmental Pollution, 250 (2019), 737-745. https://doi.org/10.1016/j.envpol.2019.04.091
  • Wang, F., Yang, W., Cheng, P., Zhang, S., Zhang, S., Jiao, W., Sun, Y., Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere, 235 (2019), 1073-1080. https://doi.org/10.1016/j.chemosphere.2019.06.196
  • Fu, Q., Tan, X., Ye, S., Ma, L., Gu, Y., Zhang, P., Chen, Q., Yang, Y., Tang, Y., Mechanism analysis of heavy metal lead captured by natural-aged microplastics. Chemosphere, 270 (2021), 128624. https://doi.org/10.1016/j.chemosphere.2020.128624
  • Guo, X., Hu, G., Fan, X., Jia, H., Sorption properties of cadmium on microplastics: The common practice experiment and A two-dimensional correlation spectroscopic study. Ecotoxicology and Environmental Safety, 190 (2020), 110118. https://doi.org/10.1016/j.ecoenv.2019.110118
  • Guo, X., Liu, Y., Wang, J., Equilibrium, kinetics and molecular dynamic modeling of Sr2+ sorption onto microplastics. Journal of Hazardous Materials, 400 (2020), 123324. https://doi.org/10.1016/j.jhazmat.2020.123324
  • Huang, X., Zemlyanov, D.Y., Diaz-Amaya, S., Salehi, M., Stanciu, L., Whelton, A.J., Competitive heavy metal adsorption onto new and aged polyethylene under various drinking water conditions. Journal of Hazardous Materials, 385 (2020), 121585. https://doi.org/10.1016/j.jhazmat.2019.121585
  • Mao, R., Lang, M., Yu, X., Wu, R., Yang, X., Guo, X., Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of Hazardous Materials, 393 (2020), 122515. https://doi.org/10.1016/j.jhazmat.2020.122515
  • Wang, Y., Wang, X., Li, Y., Li, J., Wang, F., Xia, S., Zhao, J., Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics. Chemical Engineering Journal, 392 (2020), 123808. https://doi.org/10.1016/j.cej.2019.123808
  • Zhou, Y., Yang, Y., Liu, G., He, G., Liu, W., Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. Water Research, 184 (2020), 116209. https://doi.org/10.1016/j.watres.2020.116209
  • Zou, J., Liu, X., Zhang, D., Yuan, X., Adsorption of three bivalent metals by four chemical distinct microplastics. Chemosphere, 248 (2020), 126064. https://doi.org/10.1016/j.chemosphere.2020.126064
  • Barus, B.S., Chen, K., Cai, M., Li, R., Chen, H., Li, C., Wang, J., Cheng, S.-Y., Heavy metal adsorption and release on polystyrene particles at various salinities. Frontiers in Marine Science, 8 (2021). https://doi.org/10.3389/fmars.2021.671802
  • Shen, M., Song, B., Zeng, G., Zhang, Y., Teng, F., Zhou, C., Surfactant changes lead adsorption behaviors and mechanisms on microplastics. Chemical Engineering Journal, 405 (2021), 126989. https://doi.org/10.1016/j.cej.2020.126989
  • Bao, R., Fu, D., Fan, Z., Peng, X., Peng, L., Aging of microplastics and their role as vector for copper in aqueous solution. Gondwana Research, 108 (2022), 81-90. https://doi.org/10.1016/j.gr.2021.12.002
  • Fotopoulou, K.N., Karapanagioti, H.K., Surface properties of beached plastics. Environmental Science and Pollution Research, 22 (14) (2015), 11022-11032. https://doi.org/10.1007/s11356-015-4332-y
  • Enyoh, C.E., Wang, Q., Eze, V.C., Rabin, M.H., Rakib, Md.R.J., Verla, A.W., Ibe, F.C., Duru, C.E., Verla, E.N., Assessment of potentially toxic metals adsorbed on small macroplastics in urban roadside soils in southeastern Nigeria. Journal of Hazardous Materials Advances, 7 (2022), 100122. https://doi.org/10.1016/j.hazadv.2022.100122
  • Naqash, N., Prakash, S., Kapoor, D., Singh, R., Interaction of freshwater microplastics with biota and heavy metals: a review. Environmental Chemistry Letters, 18 (6) (2020), 1813-1824. https://doi.org/10.1007/s10311-020-01044-3
  • Wang, X., Zhang, R., Li, Z., Yan, B., Adsorption properties and influencing factors of Cu(II) on polystyrene and polyethylene terephthalate microplastics in seawater. Science of the Total Environment, 812 (2022), 152573. https://doi.org/10.1016/j.scitotenv.2021.152573
  • Guo, X., Wang, X., Zhou, X., Kong, X., Tao, S., Xing, B., Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition. Environmental Science & Technology, 46 (13) (2012), 7252-7259. https://doi.org/10.1021/es301386z
  • Li, X., Mei, Q., Chen, L., Zhang, H., Dong, B., Dai, X., He, C., Zhou, J., Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Research, 157 (2019), 228-237. https://doi.org/10.1016/j.watres.2019.03.069
  • Wang, L., Guo, C., Qian, Q., Lang, D., Wu, R., Abliz, S., Wang, W., Wang, J., Adsorption behavior of UV aged microplastics on the heavy metals Pb(II) and Cu(II) in aqueous solutions. Chemosphere, 313 (2023), 137439. https://doi.org/10.1016/j.chemosphere.2022.137439
  • Park, C.M., Han, J., Chu, K.H., Al-Hamadani, Y.A.J., Her, N., Heo, J., Yoon, Y., Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar: Experiment and modeling. Journal of Industrial and Engineering Chemistry, 48 (2017), 186-193. https://doi.org/10.1016/j.jiec.2016.12.038
  • Li, J., Miao, X., Chen, X., Lu, L., Yang, Y., Fu, Y., Xiong, C., Application and characterization of grafted polytetrafluoroethylene fiber for enhanced adsorption of Cu(II) in aqueous solutions. Journal of Central South University, 23 (10) (2016), 2513-2519. https://doi.org/10.1007/s11771-016-3311-x
  • Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S., Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99 (2014), 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071
  • Li, Y., Zhang, Y., Su, F., Wang, Y., Peng, L., Liu, D., Adsorption behaviour of microplastics on the heavy metal Cr(VI) before and after ageing. Chemosphere, 302 (2022), 134865. https://doi.org/10.1016/j.chemosphere.2022.134865
  • Li, Y., Zhang, Y., Su, F., Wang, Y., Peng, L., Liu, D., Adsorption behaviour of microplastics on the heavy metal Cr(VI) before and after ageing. Chemosphere, 302 (2022), 134865. https://doi.org/10.1016/j.chemosphere.2022.134865
  • Alimi, O.S., Farner Budarz, J., Hernandez, L.M., Tufenkji, N., Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52 (4) (2018), 1704-1724. https://doi.org/10.1021/acs.est.7b05559
  • Richard, H., Carpenter, E.J., Komada, T., Palmer, P.T., Rochman, C.M., Biofilm facilitates metal accumulation onto microplastics in estuarine waters. Science of the Total Environment, 683 (2019), 600-608. https://doi.org/10.1016/j.scitotenv.2019.04.331
  • Liu, Z., Adyel, T.M., Miao, L., You, G., Liu, S., Hou, J., Biofilm influenced metal accumulation onto plastic debris in different freshwaters. Environmental Pollution, 285 (2021), 117646. https://doi.org/10.1016/j.envpol.2021.117646
  • Guan, J., Qi, K., Wang, J., Wang, W., Wang, Z., Lu, N., Qu, J., Microplastics as an emerging anthropogenic vector of trace metals in freshwater: Significance of biofilms and comparison with natural substrates. Water Research, 184 (2020), 116205. https://doi.org/10.1016/j.watres.2020.116205
  • Qi, K., Lu, N., Zhang, S., Wang, W., Wang, Z., Guan, J., Uptake of Pb(II) onto microplastic-associated biofilms in freshwater: Adsorption and combined toxicity in comparison to natural solid substrates. Journal of Hazardous Materials, 411 (2021), 125115. https://doi.org/10.1016/j.jhazmat.2021.125115
  • Sun, Y., Wang, X., Xia, S., Zhao, J., Cu(II) adsorption on poly(Lactic Acid) microplastics: Significance of microbial colonization and degradation. Chemical Engineering Journal, 429 (2022), 132306. https://doi.org/10.1016/j.cej.2021.132306
  • Prunier, J., Maurice, L., Perez, E., Gigault, J., Pierson Wickmann, A.-C., Davranche, M., Halle, A. ter, Trace metals in polyethylene debris from the North Atlantic subtropical gyre. Environmental Pollution, 245 (2019), 371-379. https://doi.org/10.1016/j.envpol.2018.10.043
  • Qiongjie, W., Yong, Z., Yangyang, Z., Zhouqi, L., Jinxiaoxue, W., Huijuan, C., Effects of biofilm on metal adsorption behavior and microbial community of microplastics. Journal of Hazardous Materials, 424 (2022), 127340. https://doi.org/10.1016/j.jhazmat.2021.127340
  • Abdurahman, A., Cui, K., Wu, J., Li, S., Gao, R., Dai, J., Liang, W., Zeng, F., Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis. Ecotoxicology and Environmental Safety, 198 (2020), 110658. https://doi.org/10.1016/j.ecoenv.2020.110658
  • Daugherty, M., Conte, M., Weber, J. C., Adsorption of organic pollutants to microplastics: the effects of dissolved organic matter. Northwest University Semester Environmental Science, (2016) 1-27.
  • Lusher, A.L., McHugh, M., Thompson, R.C., Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollution Bulletin, 67 (1) (2013), 94-99. https://doi.org/10.1016/j.marpolbul.2012.11.028
  • Smith, M., Love, D.C., Rochman, C.M., Neff, R.A., Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5 (3) (2018), 375-386. https://doi.org/10.1007/s40572-018-0206-z
  • Ribeiro, F., O’Brien, J.W., Galloway, T., Thomas, K.V., Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. TrAC Trends in Analytical Chemistry, 111 (2019), 139-147. https://doi.org/10.1016/j.trac.2018.12.010
  • Hildebrandt, L., Nack, F.L., Zimmermann, T., Pröfrock, D., Microplastics as a Trojan horse for trace metals. Journal of Hazardous Materials Letters, 2 (2021), 100035. https://doi.org/10.1016/j.hazl.2021.100035
  • Zhao, W.G., Tian, Y.M., Zhao, P., Zhao, L.A., Jin, C., Research progress on trojan-horse effect of microplastics and heavy metals in freshwater environment. Huan Jing Ke Xue = Huanjing Kexue, 44 (3) (2023), 1244-1257. https://doi.org/10.13227/j.hjkx.202202118
There are 133 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Review Articles
Authors

Nuriye Sena Coşkun 0009-0004-2050-8087

Şevval Keskin 0009-0006-3010-9818

Danial Nassouhı 0000-0003-3693-6313

Mehmet Borga Ergönül 0000-0002-0263-9129

Publication Date December 25, 2024
Submission Date January 22, 2024
Acceptance Date March 18, 2024
Published in Issue Year 2024 Volume: 33 Issue: 2

Cite

Communications Faculty of Sciences University of Ankara Series C-Biology.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.