Derleme
BibTex RIS Kaynak Göster

YAPAY ZEKA ARAÇLARI İKY İÇİN NASIL DEĞER YARATABİLİR? ÇALIŞAN DUYGU ANALİZİNİN UYGULAMA ALANLARININ İNCELENMESİ

Yıl 2023, Cilt: 21 Sayı: 50, 1048 - 1076, 20.10.2023
https://doi.org/10.35408/comuybd.1285706

Öz

İnsan Kaynakları Yönetimi (İKY), yapay zekanın ortaya çıkmasıyla birlikte derin bir dönüşüm geçirmektedir. Çalışanların duygularını analiz edebilme imkanı veren duygu analizi (sentiment analysis), İKY'de yapay zeka uygulamaları içerisinde gelecek vaat eden bir alandır. Bu çalışmada, İKY'de; çalışan duygu analizinin çeşitli uygulama alanlarını inceleyen 24 makalenin sistematik derleme yöntemiyle incelenmesi amaçlanmıştır. İnceleme, akademik makalelerden ve bilimsel toplantılarda sunulmuş bildirilerden elde edilen bulguları sentezleyerek alan özelinde önemli birtakım eğilimleri ve araştırma örüntülerini ortaya çıkarmaktadır. İncelenen araştırmalar; iş tatmini, işe alım, kurumsal itibar, örgüt ve çalışan performansı dahil olmak üzere çeşitli konularda çalışan duygu analizinin kullanılabileceğini göstermektedir. Sonuçlar, çalışan duygu analizinin İKY’de karar verme, stratejik planlama ve iş gücü yönetimi için değerli bilgiler sağlayabileceğini ortaya koymaktadır. Bununla birlikte; etik ikilemler, veri gizliliği noktasında duyulan endişeler ve güçlü duygu analizi araçlarına duyulan ihtiyaçlar, bu yenilikçi uygulamadan yararlanma konusunda birer zorluk olarak düşünülebilir. Bu çalışmanın, İKY bağlamında çalışan duygu analizinin mevcut durumuna dair bir perspektif sunarak araştırmacılara yol göstermesinin yanı sıra kamu ve özel sektör ayrımı olmaksızın çalışan verilerine yönelik söz konusu araçları kullanmak isteyen uygulamacılara da faydalı olacağı düşünülmektedir.

Destekleyen Kurum

Destekleyen kurum yoktur.

Proje Numarası

Proje desteği alınmamıştır.

Kaynakça

  • with the grey literature in systematic reviews for management and organizational studies. International Journal of Management Reviews, 19(4), 432-454.
  • APA (2023), Dictionary of psychology (Psikoloji sözlüğü). “Emotion”, Erişim: 15 Mart 2023, https://dictionary.apa.org/emotion
  • Ashforth, B. E., & Humphrey, R. H. (1995). Emotion in the workplace: A reappraisal. Human Relations, 48(2), 97-125.
  • Bajpai, R., Hazarika, D., Singh, K., Gorantla, S., Cambria, E., & Zimmermann, R. (2023). Aspect-sentiment embeddings for company profiling and employee opinion mining. In Computational Linguistics and Intelligent Text Processing: 19th International Conference, CICLing 2018, Hanoi, Vietnam, March 18–24, 2018, Revised Selected Papers, Part II (pp. 142-160). Springer Nature Switzerland.
  • Barahona, J., & Sun, H. M. (2017). A Process for Exploring Employees’ Relationships via Social Network and Sentiment Analysis. In Data Mining and Big Data: Second International Conference, DMBD 2017, Fukuoka, Japan, July 27–August 1, 2017, Proceedings 2 (pp. 3-8). Springer International Publishing.
  • Beck, A. T. (1979). Cognitive therapy of depression. Guilford press.
  • Bi, Y., & Tang, M. (2022). Correspondence model of human resource management and marketing based on genetic algorithm. Mobile Information Systems, 2022, 1-15.
  • Bose, A., & Khatoon, N. (2022, May). A Study on Sentiment Analysis on It Sector Employees Using K-means Clustering. In Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (pp. 495-504). Singapore: Springer Nature Singapore.
  • Boudt, K., & Thewissen, J. (2019). Jockeying for position in CEO letters: Impression management and sentiment analytics. Financial Management, 48(1), 77-115.
  • Burns, D. (2006). İyi hissetmek. Karaosmanoğlu, H.A. Bilişsel Davranışçı Terapiler Serisi-3, İstanbul: Psikonet yayınları.
  • Caylor, M., Cecchini, M., & Winchel, J. (2017). Analysts' qualitative statements and the profitability of favorable investment recommendations. Accounting, Organizations and Society, 57, 33-51.
  • Chang, E. (2005). Employees’ overall perception of HRM effectiveness. Human Relations, 58(4), 523-544.
  • Chungade, T. D., & Kharat, S. (2017, March). Employee performance assessment in virtual organization using domain-driven data mining and sentiment analysis. In 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) (pp. 1-7). IEEE.
  • Coff, R. & Raffiee, J. (2015). Towards a theory of perceived firm-specific human capital. Academy of Management Perspectives, 29(3), 326–341.
  • Confente, I., Siciliano, G. G., Gaudenzi, B., & Eickhoff, M. (2019). Effects of data breaches from user-generated content: A corporate reputation analysis. European Management Journal, 37(4), 492-504.
  • Costa, A., & Veloso, A. (2015). Employee Analytics through Sentiment Analysis. In SBBD’15 Proceedings of the 30th Brazilian Symposium on Databases (pp. 101-112), October 13-16, 2015, Petrópolis, RJ, Brazil .
  • Cropanzano, R., Rupp, D. E., & Byrne, Z. S. (2003). The relationship of emotional exhaustion to work attitudes, job performance, and organizational citizenship behaviors. Journal of Applied Psychology, 88(1), 160.
  • Dang, S., & Ahmad, P. H. (2014). Text mining: Techniques and its application. International Journal of Engineering & Technology Innovations, 1(4), 22-25.
  • Davis, A. K., Piger, J. M., & Sedor, L. M. (2012). Beyond the numbers: Measuring the information content of earnings press release language. Contemporary Accounting Research, 29(3), 845-868.
  • Delery, J. E., & Roumpi, D. (2017). Strategic human resource management, human capital and competitive advantage: is the field going in circles?. Human Resource Management Journal, 27(1), 1-21.
  • Delmotte, J., De Winne, S., & Sels, L. (2012). Toward an assessment of perceived HRM system strength: Scale development and validation. The International Journal of Human Resource Management, 23(7), 1481-1506.
  • Devi, G. D., & Kamalakannan, S. (2022). Sentimental Analysis (SA) of Employee Job Satisfaction from Twitter Message Using Flair Pytorch (FP) Method. In Intelligent Communication Technologies and Virtual Mobile Networks: Proceedings of ICICV 2022 (pp. 367-380). Singapore: Springer Nature Singapore.
  • Doorewaard, H., & Benschop, Y. (2003). HRM and organizational change: an emotional endeavor. Journal of Organizational Change Management, 16(3), 272-286.
  • Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3-4), 169-200.
  • Ellsworth, P. C. (1991). Some implications of cognitive appraisal theories of emotion. In K. T. Strongman (Ed.), International review of studies on emotion (pp. 143–161). New York, NY: Wiley
  • Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56(3), 218-226.
  • Gaye, B., Zhang, D., & Wulamu, A. (2021). A tweet sentiment classification approach using a hybrid stacked ensemble technique. Information, 12(9), 374.
  • Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain adaptation for large-scale sentiment classification: A deep learning approach. In Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 513-520).
  • Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 213-236.
  • Hegde, N. P., Vikkurty, S., Kandukuri, G., Musunuru, S., & Hegde, G. P. (2022). Employee Sentiment Analysis towards Remote Work during COVID-19 Using Twitter Data. International Journal of Intelligent Engineering and Systems, 75-84.
  • Ho, D. H., Wang, J., & Kim, H. S. (2023). Exploring Leadership Style and Employee Attitude through Cluster and Sentiment Analyses of In-Depth Interviews of Employees. Administrative Sciences, 13(3), 91.
  • Hobfoll, S. E. (2001). The influence of culture, community, and the nested‐self in the stress process: Advancing conservation of resources theory. Applied Psychology, 50(3), 337-421.
  • Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge, MA: MIT Press.
  • Hooghiemstra, R., Kuang, Y. F., & Qin, B. (2015). Say-on-pay votes: The role of the media. European Accounting Review, 24(4), 753-778.
  • Jung, Y., & Suh, Y. (2019). Mining the voice of employees: A text mining approach to identifying and analyzing job satisfaction factors from online employee reviews. Decision Support Systems, 123, 113074.
  • Karthikeyan, C., Poojitha, D. & Rukmini, P. (2020). Tracking of employees’ feedback of an organization using sentimental analysis. International Journal of Scientific & Technology Research 9(2), 5836-5839.
  • Kashive, N., Powale, L., & Kashive, K. (2020). Understanding user perception toward artificial intelligence (AI) enabled e-learning. The International Journal of Information and Learning Technology, 38(1), 1-19.
  • Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele University, 33(2004), 1-26.
  • Lazarus, R. S. (2001). Relational meaning and discrete emotions. In K. R. Scherer, A. Schorr, & T. Johnstone (Eds.), Appraisal processes in emotion: Theory, methods, research (pp. 37–67). Oxford University Press.
  • Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1-167.
  • Loke, R. E., & Lam-Lion, R. (2021). A company's corporate reputation through the eyes of employees measured with sentiment analysis of online reviews. In In Proceedings of the 10th International Conference on Data Science, Technology and Applications (DATA 2021) (pp. 378-385).
  • Luger, G.F., (2002). Artificial intelligence structures and strategies for complex problem solving, 4th edition, Addison-Wesley.
  • MacNiven, S. (2015). Beyond sentiment: exploring online employee engagement. an empirical study of participation in an online employee newsroom. Communication Ethics in a Connected World. Research in Public Relations and Organizational Communication, Peter Lang, Bern, Switzerland, 347-363.
  • Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis—A review of research topics, venues, and top cited papers. Computer Science Review, 27, 16-32.
  • Martin, J. R. (2000). “Beyond exchange: Appraisal systems in English”, in S Hunston and G Thompson (Eds.), Evaluation in Text: Authorial Stance and the Construction of Discourse (pp. 142-175). Oxford: Oxford University Press.
  • Mathis, R. L., & Jackson, J. H. (2000). Human resources management. Minneapolis: West Publishing Company.
  • Maurya, C. G., Gore, S., & Rajput, D. S. (2018). A use of social media for opinion mining: An overview (with the use of hybrid textual and visual sentiment ontology). In Proceedings of International Conference on Recent Advancement on Computer and Communication: ICRAC 2017 (pp. 315-324). Springer Singapore.
  • Meijerink, J., Boons, M., Keegan, A., & Marler, J. (2021). Algorithmic human resource management: Synthesizing developments and cross-disciplinary insights on digital HRM. The International Journal Of Human Resource Management, 32(12), 2545-2562.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Moniz, A., & de Jong, F. (2014). Sentiment analysis and the impact of employee satisfaction on firm earnings. In Advances in Information Retrieval: 36th European Conference on IR Research, ECIR 2014, Amsterdam, The Netherlands, April 13-16, 2014. Proceedings 36 (pp. 519-527). Springer International Publishing.
  • Munezero, M., Montero, C. S., Sutinen, E., & Pajunen, J. (2014). Are they different? Affect, feeling, emotion, sentiment, and opinion detection in text. IEEE Transactions on Affective Computing, 5(2), 101-111.
  • Nilsson, N. (1998). Artificial intelligence: A new synthesis. Morgan Kaufmann Publishers.
  • Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning (No. 47). University of Illinois press.
  • Paez, A. (2017). Gray literature: An important resource in systematic reviews. Journal of Evidence‐Based Medicine, 10(3), 233-240.
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906.
  • Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135.
  • Pant, S. K., & Agarwal, M. (2021). A study of sentiments of employees during COVID-19. Telecom Business Review. 14(1), 10-18.
  • Papadaki, D., Bakas, D. N., Ochieng, E. G., Karamitsos, D., & Kirkham, D. (2019). Big data from social media and scientific literature databases reveals relationships among risk management, project management and project success. PM World Journal, 8(8), 1-18.
  • Pengnate, S., Lehmberg, D. G., & Tangpong, C. (2020). Top management's communication in economic crisis and the firm's subsequent performance: sentiment analysis approach. Corporate Communications: An International Journal, 25(2), 187-205.
  • Prabowo, R., & Thelwall, M. (2009). Sentiment analysis: A combined approach. Journal of Informetrics, 3(2), 143-157.
  • Roulin, N., & Levashina, J. (2019). LinkedIn as a new selection method: Psychometric properties and assessment approach. Personnel Psychology, 72(2), 187-211.
  • Rousseau, D. M. (1989). Psychological and implied contracts in organizations. Employee Responsibilities and Rights Journal, 2, 121-139.
  • Rousseau, D. M., & Greller, M. M. (1994). Human resource practices: Administrative contract makers. Human Resource Management, 33(3), 385-401.
  • Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145.
  • Schaufeli, W. B., & Bakker, A. B. (2004). Job demands, job resources, and their relationship with burnout and engagement: A multi‐sample study. Journal of Organizational Behavior, 25(3), 293-315.
  • Scherer, K. R. (2009). The dynamic architecture of emotion: Evidence for the component process model. Cognition & Emotion, 23, 1307–1351.
  • Seker, S. E. (2016). Duygu Analizi (Sentimental Analysis). YBS Ansiklopedi, 3(3), 21-36.
  • Shaw, E., Payri, M., Cohn, M., & Shaw, I. R. (2013). How often is employee anger an insider risk I? Detecting and measuring negative sentiment versus insider risk in digital communications. Journal of Digital Forensics, Security and Law, 8(1), 3.
  • Soh, C., Yu, S., Narayanan, A., Duraisamy, S., & Chen, L. (2019). Employee profiling via aspect-based sentiment and network for insider threats detection. Expert Systems with Applications, 135, 351-361.
  • Strohmeier, S., & Piazza, F. (2015). Artificial intelligence techniques in human resource management—a conceptual exploration. Intelligent Techniques in Engineering Management: Theory and Applications, 149-172.
  • Subramaniam, J., Durrant, F., Edwardson, S., El‐Ghazali, S., Holt, C., McCrossan, R., ... & Wong, D. J. N. (2022). Recruitment to higher specialty training in anaesthesia in the UK during the COVID‐19 pandemic: a national survey. Anaesthesia, 77(5), 538-546.
  • Symitsi, E., & Stamolampros, P. (2021). Employee sentiment index: Predicting stock returns with online employee data. Expert Systems with Applications, 182, 115294.
  • Van der Elst, T., Bosman, J., De Cuyper, N., Stouten, J., & De Witte, H. (2013). Does positive affect buffer the associations between job insecurity and work engagement and psychological distress? A test among South African workers. Applied Psychology, 62(4), 558-570.
  • Wang, Z., Li, C., & Li, X. (2017). Resilience, leadership and work engagement: The mediating role of positive affect. Social Indicators Research, 132, 699-708.
  • Wright, P. M., & Boswell, W. R. (2002). Desegregating HRM: A review and synthesis of micro and macro human resource management research. Journal of Management, 28(3), 247-276.
  • Wu, F., & Huang, Y. (2016, August). Sentiment domain adaptation with multiple sources. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 301-310).
  • Xie, J., Su, R. L. G., & Song, J. (2022). An analytical study of employee loyalty and corporate culture satisfaction assessment based on sentiment analysis. Frontiers in Psychology, 13.
  • Yukselturk, O., & Tucker, J. (2015). The impact of analyst sentiment on UK stock recommendations and target prices. Accounting and Business Research, 45(6-7), 869-904.
  • Zhang, Y., & Wang, L. (2020, June). Design of Employee Comment Sentiment Analysis Platform Based on AE-SVM Algorithm. In Journal of Physics: Conference Series (Vol. 1575, No. 1, p. 012019). IOP Publishing.

HOW CAN ARTIFICIAL INTELLIGENCE TOOLS CREATE VALUE FOR HRM? INVESTIGATION OF APPLICATION AREAS OF EMPLOYEE SENTIMENT ANALYSIS

Yıl 2023, Cilt: 21 Sayı: 50, 1048 - 1076, 20.10.2023
https://doi.org/10.35408/comuybd.1285706

Öz

The field of Human Resource Management (HRM) is undergoing a profound transformation with the emergence of artificial intelligence. Sentiment analysis, which allows analyzing the sentiments of employees, is a promising field among artificial intelligence applications in HRM. In this study, it is aimed to examine 24 articles examining various application areas of employee sentiment analysis in HRM through a systematic review method. The review synthesizes findings from academic journals and conference proceedings to reveal some important trends and research patterns in the field. The findings suggest that employee sentiment analysis was used for various topics, including job satisfaction, recruitment, organizational reputation, and organizational and employee performance. The results suggest that employee sentiment analysis can provide valuable information for HRM decision-making, strategic planning, and workforce management. However, ethical dilemmas, data privacy concerns, and the need for powerful sentiment analysis tools can be considered challenges in utilizing this innovative application. This study provides a perspective on the current state of employee sentiment analysis in the context of HRM and will be useful for researchers as well as practitioners who want to use these tools for employee data regardless of the public and private sectors.

Proje Numarası

Proje desteği alınmamıştır.

Kaynakça

  • with the grey literature in systematic reviews for management and organizational studies. International Journal of Management Reviews, 19(4), 432-454.
  • APA (2023), Dictionary of psychology (Psikoloji sözlüğü). “Emotion”, Erişim: 15 Mart 2023, https://dictionary.apa.org/emotion
  • Ashforth, B. E., & Humphrey, R. H. (1995). Emotion in the workplace: A reappraisal. Human Relations, 48(2), 97-125.
  • Bajpai, R., Hazarika, D., Singh, K., Gorantla, S., Cambria, E., & Zimmermann, R. (2023). Aspect-sentiment embeddings for company profiling and employee opinion mining. In Computational Linguistics and Intelligent Text Processing: 19th International Conference, CICLing 2018, Hanoi, Vietnam, March 18–24, 2018, Revised Selected Papers, Part II (pp. 142-160). Springer Nature Switzerland.
  • Barahona, J., & Sun, H. M. (2017). A Process for Exploring Employees’ Relationships via Social Network and Sentiment Analysis. In Data Mining and Big Data: Second International Conference, DMBD 2017, Fukuoka, Japan, July 27–August 1, 2017, Proceedings 2 (pp. 3-8). Springer International Publishing.
  • Beck, A. T. (1979). Cognitive therapy of depression. Guilford press.
  • Bi, Y., & Tang, M. (2022). Correspondence model of human resource management and marketing based on genetic algorithm. Mobile Information Systems, 2022, 1-15.
  • Bose, A., & Khatoon, N. (2022, May). A Study on Sentiment Analysis on It Sector Employees Using K-means Clustering. In Smart Intelligent Computing and Applications, Volume 2: Proceedings of Fifth International Conference on Smart Computing and Informatics (SCI 2021) (pp. 495-504). Singapore: Springer Nature Singapore.
  • Boudt, K., & Thewissen, J. (2019). Jockeying for position in CEO letters: Impression management and sentiment analytics. Financial Management, 48(1), 77-115.
  • Burns, D. (2006). İyi hissetmek. Karaosmanoğlu, H.A. Bilişsel Davranışçı Terapiler Serisi-3, İstanbul: Psikonet yayınları.
  • Caylor, M., Cecchini, M., & Winchel, J. (2017). Analysts' qualitative statements and the profitability of favorable investment recommendations. Accounting, Organizations and Society, 57, 33-51.
  • Chang, E. (2005). Employees’ overall perception of HRM effectiveness. Human Relations, 58(4), 523-544.
  • Chungade, T. D., & Kharat, S. (2017, March). Employee performance assessment in virtual organization using domain-driven data mining and sentiment analysis. In 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) (pp. 1-7). IEEE.
  • Coff, R. & Raffiee, J. (2015). Towards a theory of perceived firm-specific human capital. Academy of Management Perspectives, 29(3), 326–341.
  • Confente, I., Siciliano, G. G., Gaudenzi, B., & Eickhoff, M. (2019). Effects of data breaches from user-generated content: A corporate reputation analysis. European Management Journal, 37(4), 492-504.
  • Costa, A., & Veloso, A. (2015). Employee Analytics through Sentiment Analysis. In SBBD’15 Proceedings of the 30th Brazilian Symposium on Databases (pp. 101-112), October 13-16, 2015, Petrópolis, RJ, Brazil .
  • Cropanzano, R., Rupp, D. E., & Byrne, Z. S. (2003). The relationship of emotional exhaustion to work attitudes, job performance, and organizational citizenship behaviors. Journal of Applied Psychology, 88(1), 160.
  • Dang, S., & Ahmad, P. H. (2014). Text mining: Techniques and its application. International Journal of Engineering & Technology Innovations, 1(4), 22-25.
  • Davis, A. K., Piger, J. M., & Sedor, L. M. (2012). Beyond the numbers: Measuring the information content of earnings press release language. Contemporary Accounting Research, 29(3), 845-868.
  • Delery, J. E., & Roumpi, D. (2017). Strategic human resource management, human capital and competitive advantage: is the field going in circles?. Human Resource Management Journal, 27(1), 1-21.
  • Delmotte, J., De Winne, S., & Sels, L. (2012). Toward an assessment of perceived HRM system strength: Scale development and validation. The International Journal of Human Resource Management, 23(7), 1481-1506.
  • Devi, G. D., & Kamalakannan, S. (2022). Sentimental Analysis (SA) of Employee Job Satisfaction from Twitter Message Using Flair Pytorch (FP) Method. In Intelligent Communication Technologies and Virtual Mobile Networks: Proceedings of ICICV 2022 (pp. 367-380). Singapore: Springer Nature Singapore.
  • Doorewaard, H., & Benschop, Y. (2003). HRM and organizational change: an emotional endeavor. Journal of Organizational Change Management, 16(3), 272-286.
  • Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3-4), 169-200.
  • Ellsworth, P. C. (1991). Some implications of cognitive appraisal theories of emotion. In K. T. Strongman (Ed.), International review of studies on emotion (pp. 143–161). New York, NY: Wiley
  • Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56(3), 218-226.
  • Gaye, B., Zhang, D., & Wulamu, A. (2021). A tweet sentiment classification approach using a hybrid stacked ensemble technique. Information, 12(9), 374.
  • Glorot, X., Bordes, A., & Bengio, Y. (2011). Domain adaptation for large-scale sentiment classification: A deep learning approach. In Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 513-520).
  • Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 213-236.
  • Hegde, N. P., Vikkurty, S., Kandukuri, G., Musunuru, S., & Hegde, G. P. (2022). Employee Sentiment Analysis towards Remote Work during COVID-19 Using Twitter Data. International Journal of Intelligent Engineering and Systems, 75-84.
  • Ho, D. H., Wang, J., & Kim, H. S. (2023). Exploring Leadership Style and Employee Attitude through Cluster and Sentiment Analyses of In-Depth Interviews of Employees. Administrative Sciences, 13(3), 91.
  • Hobfoll, S. E. (2001). The influence of culture, community, and the nested‐self in the stress process: Advancing conservation of resources theory. Applied Psychology, 50(3), 337-421.
  • Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge, MA: MIT Press.
  • Hooghiemstra, R., Kuang, Y. F., & Qin, B. (2015). Say-on-pay votes: The role of the media. European Accounting Review, 24(4), 753-778.
  • Jung, Y., & Suh, Y. (2019). Mining the voice of employees: A text mining approach to identifying and analyzing job satisfaction factors from online employee reviews. Decision Support Systems, 123, 113074.
  • Karthikeyan, C., Poojitha, D. & Rukmini, P. (2020). Tracking of employees’ feedback of an organization using sentimental analysis. International Journal of Scientific & Technology Research 9(2), 5836-5839.
  • Kashive, N., Powale, L., & Kashive, K. (2020). Understanding user perception toward artificial intelligence (AI) enabled e-learning. The International Journal of Information and Learning Technology, 38(1), 1-19.
  • Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele University, 33(2004), 1-26.
  • Lazarus, R. S. (2001). Relational meaning and discrete emotions. In K. R. Scherer, A. Schorr, & T. Johnstone (Eds.), Appraisal processes in emotion: Theory, methods, research (pp. 37–67). Oxford University Press.
  • Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1-167.
  • Loke, R. E., & Lam-Lion, R. (2021). A company's corporate reputation through the eyes of employees measured with sentiment analysis of online reviews. In In Proceedings of the 10th International Conference on Data Science, Technology and Applications (DATA 2021) (pp. 378-385).
  • Luger, G.F., (2002). Artificial intelligence structures and strategies for complex problem solving, 4th edition, Addison-Wesley.
  • MacNiven, S. (2015). Beyond sentiment: exploring online employee engagement. an empirical study of participation in an online employee newsroom. Communication Ethics in a Connected World. Research in Public Relations and Organizational Communication, Peter Lang, Bern, Switzerland, 347-363.
  • Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis—A review of research topics, venues, and top cited papers. Computer Science Review, 27, 16-32.
  • Martin, J. R. (2000). “Beyond exchange: Appraisal systems in English”, in S Hunston and G Thompson (Eds.), Evaluation in Text: Authorial Stance and the Construction of Discourse (pp. 142-175). Oxford: Oxford University Press.
  • Mathis, R. L., & Jackson, J. H. (2000). Human resources management. Minneapolis: West Publishing Company.
  • Maurya, C. G., Gore, S., & Rajput, D. S. (2018). A use of social media for opinion mining: An overview (with the use of hybrid textual and visual sentiment ontology). In Proceedings of International Conference on Recent Advancement on Computer and Communication: ICRAC 2017 (pp. 315-324). Springer Singapore.
  • Meijerink, J., Boons, M., Keegan, A., & Marler, J. (2021). Algorithmic human resource management: Synthesizing developments and cross-disciplinary insights on digital HRM. The International Journal Of Human Resource Management, 32(12), 2545-2562.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Moniz, A., & de Jong, F. (2014). Sentiment analysis and the impact of employee satisfaction on firm earnings. In Advances in Information Retrieval: 36th European Conference on IR Research, ECIR 2014, Amsterdam, The Netherlands, April 13-16, 2014. Proceedings 36 (pp. 519-527). Springer International Publishing.
  • Munezero, M., Montero, C. S., Sutinen, E., & Pajunen, J. (2014). Are they different? Affect, feeling, emotion, sentiment, and opinion detection in text. IEEE Transactions on Affective Computing, 5(2), 101-111.
  • Nilsson, N. (1998). Artificial intelligence: A new synthesis. Morgan Kaufmann Publishers.
  • Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning (No. 47). University of Illinois press.
  • Paez, A. (2017). Gray literature: An important resource in systematic reviews. Journal of Evidence‐Based Medicine, 10(3), 233-240.
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906.
  • Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135.
  • Pant, S. K., & Agarwal, M. (2021). A study of sentiments of employees during COVID-19. Telecom Business Review. 14(1), 10-18.
  • Papadaki, D., Bakas, D. N., Ochieng, E. G., Karamitsos, D., & Kirkham, D. (2019). Big data from social media and scientific literature databases reveals relationships among risk management, project management and project success. PM World Journal, 8(8), 1-18.
  • Pengnate, S., Lehmberg, D. G., & Tangpong, C. (2020). Top management's communication in economic crisis and the firm's subsequent performance: sentiment analysis approach. Corporate Communications: An International Journal, 25(2), 187-205.
  • Prabowo, R., & Thelwall, M. (2009). Sentiment analysis: A combined approach. Journal of Informetrics, 3(2), 143-157.
  • Roulin, N., & Levashina, J. (2019). LinkedIn as a new selection method: Psychometric properties and assessment approach. Personnel Psychology, 72(2), 187-211.
  • Rousseau, D. M. (1989). Psychological and implied contracts in organizations. Employee Responsibilities and Rights Journal, 2, 121-139.
  • Rousseau, D. M., & Greller, M. M. (1994). Human resource practices: Administrative contract makers. Human Resource Management, 33(3), 385-401.
  • Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145.
  • Schaufeli, W. B., & Bakker, A. B. (2004). Job demands, job resources, and their relationship with burnout and engagement: A multi‐sample study. Journal of Organizational Behavior, 25(3), 293-315.
  • Scherer, K. R. (2009). The dynamic architecture of emotion: Evidence for the component process model. Cognition & Emotion, 23, 1307–1351.
  • Seker, S. E. (2016). Duygu Analizi (Sentimental Analysis). YBS Ansiklopedi, 3(3), 21-36.
  • Shaw, E., Payri, M., Cohn, M., & Shaw, I. R. (2013). How often is employee anger an insider risk I? Detecting and measuring negative sentiment versus insider risk in digital communications. Journal of Digital Forensics, Security and Law, 8(1), 3.
  • Soh, C., Yu, S., Narayanan, A., Duraisamy, S., & Chen, L. (2019). Employee profiling via aspect-based sentiment and network for insider threats detection. Expert Systems with Applications, 135, 351-361.
  • Strohmeier, S., & Piazza, F. (2015). Artificial intelligence techniques in human resource management—a conceptual exploration. Intelligent Techniques in Engineering Management: Theory and Applications, 149-172.
  • Subramaniam, J., Durrant, F., Edwardson, S., El‐Ghazali, S., Holt, C., McCrossan, R., ... & Wong, D. J. N. (2022). Recruitment to higher specialty training in anaesthesia in the UK during the COVID‐19 pandemic: a national survey. Anaesthesia, 77(5), 538-546.
  • Symitsi, E., & Stamolampros, P. (2021). Employee sentiment index: Predicting stock returns with online employee data. Expert Systems with Applications, 182, 115294.
  • Van der Elst, T., Bosman, J., De Cuyper, N., Stouten, J., & De Witte, H. (2013). Does positive affect buffer the associations between job insecurity and work engagement and psychological distress? A test among South African workers. Applied Psychology, 62(4), 558-570.
  • Wang, Z., Li, C., & Li, X. (2017). Resilience, leadership and work engagement: The mediating role of positive affect. Social Indicators Research, 132, 699-708.
  • Wright, P. M., & Boswell, W. R. (2002). Desegregating HRM: A review and synthesis of micro and macro human resource management research. Journal of Management, 28(3), 247-276.
  • Wu, F., & Huang, Y. (2016, August). Sentiment domain adaptation with multiple sources. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 301-310).
  • Xie, J., Su, R. L. G., & Song, J. (2022). An analytical study of employee loyalty and corporate culture satisfaction assessment based on sentiment analysis. Frontiers in Psychology, 13.
  • Yukselturk, O., & Tucker, J. (2015). The impact of analyst sentiment on UK stock recommendations and target prices. Accounting and Business Research, 45(6-7), 869-904.
  • Zhang, Y., & Wang, L. (2020, June). Design of Employee Comment Sentiment Analysis Platform Based on AE-SVM Algorithm. In Journal of Physics: Conference Series (Vol. 1575, No. 1, p. 012019). IOP Publishing.
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Merve Gerçek 0000-0002-7076-8192

Cem Güney Özveren 0000-0001-9435-6662

Proje Numarası Proje desteği alınmamıştır.
Yayımlanma Tarihi 20 Ekim 2023
Gönderilme Tarihi 19 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 21 Sayı: 50

Kaynak Göster

APA Gerçek, M., & Özveren, C. G. (2023). YAPAY ZEKA ARAÇLARI İKY İÇİN NASIL DEĞER YARATABİLİR? ÇALIŞAN DUYGU ANALİZİNİN UYGULAMA ALANLARININ İNCELENMESİ. Yönetim Bilimleri Dergisi, 21(50), 1048-1076. https://doi.org/10.35408/comuybd.1285706

Sayın Araştırmacı;

Dergimize gelen yoğun talep nedeniyle Ocak ve Mart 2025 sayısı için öngörülen kontenjan dolmuştur, gönderilen makaleler ilerleyen sayılarda değerlendirilebilecektir. Bu hususa dikkat ederek yeni makale gönderimi yapmanızı rica ederiz.

Dergimize göndereceğiniz çalışmalar linkte yer alan taslak dikkate alınarak hazırlanmalıdır. Çalışmanızı aktaracağınız taslak dergi yazım kurallarına göre düzenlenmiştir. Bu yüzden biçimlendirmeyi ve ana başlıkları değiştirmeden çalışmanızı bu taslağa aktarmanız gerekmektedir.
İngilizce Makale Şablonu için tıklayınız...

Saygılarımızla,