Research Article
BibTex RIS Cite
Year 2020, Volume: 41 Issue: 2, 521 - 526, 25.06.2020
https://doi.org/10.17776/csj.660226

Abstract

References

  • [1] Arikoglu A. and Ozkol I. Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method. Compos. Struct., 92(12) (2010) 3031-3039.
  • [2] Baba B.O. Free vibration analysis of curved sandwich beams with face/core debond using theory and experiment. Mech. Adv. Mater. Struc., 19(5) (2012) 350-359.
  • [3] Lou J., Ma L. and Wu L.Z. Free vibration analysis of simply supported sandwich beams with lattice truss core. Mat. Scı. Eng. B-Adv., 177(19) (2012) 1712-1716.
  • [4] Sadeghnejad S., Sadighi M. and Hamedani A. O. An extended higher-order free vibration analysis of composite sandwich beam with viscoelastic core. ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 20122012. p. 75-82.
  • [5] Xu M. and Qiu Z. Free vibration analysis and optimization of composite lattice truss core sandwich beams with interval parameters. Compos. Struct., 106(1) (2013) 85-95.
  • [6] Wang Y. and Wang X. Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method. J. Sandw. Struct. Mater., 18(3) (2016) 294-320.
  • [7] Cheng S., Qiao P., Chen F., Fan W. and Zhu Z. Free vibration analysis of fiber-reinforced polymer honeycomb sandwich beams with a refined sandwich beam theory. J. Sandw. Struct. Mater., 18(2) (2016) 242-260.
  • [8] Chen D., Kitipornchai S. and Yang J. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct., 107(1) (2016) 39-48.
  • [9] Khdeir A. A. and Aldraihem O. J. Free vibration of sandwich beams with soft core. Compos. Struct., 154((2016) 179-189.
  • [10] Zhang Z. J., Han B., Zhang Q.C. and Jin F. Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores. Compos. Struct., 171(1) (2017) 335-344.
  • [11] Demir O., Balkan D., Peker R. C., Metin M. and Arikoglu A. Vibration analysis of curved composite sandwich beams with viscoelastic core by using differential quadrature method. J. Sandw. Struct. Mater., 22(3) (2020) 743–770.
  • [12] Chanthanumataporn S. and Watanabe N. Free vibration of a light sandwich beam accounting for ambient air. J. Vib. Control., 24(16) (2018) 3658-3675.
  • [13] De Souza Eloy F., Gomes G. F., Ancelotti A. C., da Cunha S. S., Bombard A. J. F. and Junqueira D. M. A numerical-experimental dynamic analysis of composite sandwich beam with magnetorheological elastomer honeycomb core. Compos. Struct., 209(1) (2019) 242-257.
  • [14] Rahmani O., Khalili S., Malekzadeh K. and Hadavinia H. Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core. Compos. Struct., 91(2) (2009) 229-235.
  • [15] Asgari G., Payganeh G. and Fard K. M. Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations. Struct. Eng. Mech., 72(4) (2019) 525-540.
  • [16] Xu G.D., Zeng T., Cheng S., Wang X.-h. and Zhang K. Free vibration of composite sandwich beam with graded corrugated lattice core. Compos. Struct., 229(1) (2019) 335-344.
  • [17] Temel B. and Noori A. R. Out-of-plane vibrations of shear-deformable afg cycloidal beams with variable cross section. ‎Appl. Acoust., 155(1) (2019) 84-96.
  • [18] Aslan T. A., Noori A. R. and Temel B. Dynamic response of viscoelastic tapered cycloidal rods. Mech. Res. Commun., 92((2018) 8-14.
  • [19] Celebi K., Yarimpabuc D. and Tutuncu N. Free vibration analysis of functionally graded beams using complementary functions method. Arch. Appl. Mech., 88(5) (2018) 729-739.
  • [20] Yildirim S. and Tutuncu N. Effect of magneto-thermal loads on the rotational instability of heterogeneous rotors. AIAA J., 57(5) (2019) 2069-2074.
  • [21] Aktas Z. Numerical solutions of two-point boundary value problems. Ankara, Turkey: METU, Dept of Computer Eng, (1972).
  • [22] Roberts S. and Shipman J. Fundamental matrix and two-point boundary-value problems. J. Optimiz. Theory. App., 28(1) (1979) 77-88.
  • [23] Tutuncu N. and Temel B. A novel approach to stress analysis of pressurized fgm cylinders, disks and spheres. Compos. Struct., 91(3) (2009) 385-390.
  • [24] Temel B. and Noori A.R. Transient analysis of laminated composite parabolic arches of uniform thickness. Mech. Based Des. Struc., 47(5) (2019) 546-554.
  • [25] Temel B. and Noori A.R. On the vibration analysis of laminated composite parabolic arches with variable cross-section of various ply stacking sequences, Mech. Adv. Mater. Struc. (2018).

An efficient method for the plane vibration analysis of composite sandwich beam with an orthotropic core

Year 2020, Volume: 41 Issue: 2, 521 - 526, 25.06.2020
https://doi.org/10.17776/csj.660226

Abstract

The free vibration characteristics of composite sandwich beam is examined using an efficient numerical solution scheme. The simply supported beam is assumed to be composed of two isotropic face sheets and an orthotropic core. The plane elasticity formulations are used to derive the equations of motion and the reduced governing differential equation is solved by Complementary Functions Method. The dimensionless analysis of natural frequencies is done to acquire the high precision along with few divisions. The influences of material and geometric parameters on the natural frequency are also illustrated. The solutions are validated with the results obtained from finite element software and it is shown that presented method is an efficient solution technique for the vibration problems of composite beams with a core.

References

  • [1] Arikoglu A. and Ozkol I. Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method. Compos. Struct., 92(12) (2010) 3031-3039.
  • [2] Baba B.O. Free vibration analysis of curved sandwich beams with face/core debond using theory and experiment. Mech. Adv. Mater. Struc., 19(5) (2012) 350-359.
  • [3] Lou J., Ma L. and Wu L.Z. Free vibration analysis of simply supported sandwich beams with lattice truss core. Mat. Scı. Eng. B-Adv., 177(19) (2012) 1712-1716.
  • [4] Sadeghnejad S., Sadighi M. and Hamedani A. O. An extended higher-order free vibration analysis of composite sandwich beam with viscoelastic core. ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 20122012. p. 75-82.
  • [5] Xu M. and Qiu Z. Free vibration analysis and optimization of composite lattice truss core sandwich beams with interval parameters. Compos. Struct., 106(1) (2013) 85-95.
  • [6] Wang Y. and Wang X. Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method. J. Sandw. Struct. Mater., 18(3) (2016) 294-320.
  • [7] Cheng S., Qiao P., Chen F., Fan W. and Zhu Z. Free vibration analysis of fiber-reinforced polymer honeycomb sandwich beams with a refined sandwich beam theory. J. Sandw. Struct. Mater., 18(2) (2016) 242-260.
  • [8] Chen D., Kitipornchai S. and Yang J. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct., 107(1) (2016) 39-48.
  • [9] Khdeir A. A. and Aldraihem O. J. Free vibration of sandwich beams with soft core. Compos. Struct., 154((2016) 179-189.
  • [10] Zhang Z. J., Han B., Zhang Q.C. and Jin F. Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores. Compos. Struct., 171(1) (2017) 335-344.
  • [11] Demir O., Balkan D., Peker R. C., Metin M. and Arikoglu A. Vibration analysis of curved composite sandwich beams with viscoelastic core by using differential quadrature method. J. Sandw. Struct. Mater., 22(3) (2020) 743–770.
  • [12] Chanthanumataporn S. and Watanabe N. Free vibration of a light sandwich beam accounting for ambient air. J. Vib. Control., 24(16) (2018) 3658-3675.
  • [13] De Souza Eloy F., Gomes G. F., Ancelotti A. C., da Cunha S. S., Bombard A. J. F. and Junqueira D. M. A numerical-experimental dynamic analysis of composite sandwich beam with magnetorheological elastomer honeycomb core. Compos. Struct., 209(1) (2019) 242-257.
  • [14] Rahmani O., Khalili S., Malekzadeh K. and Hadavinia H. Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core. Compos. Struct., 91(2) (2009) 229-235.
  • [15] Asgari G., Payganeh G. and Fard K. M. Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations. Struct. Eng. Mech., 72(4) (2019) 525-540.
  • [16] Xu G.D., Zeng T., Cheng S., Wang X.-h. and Zhang K. Free vibration of composite sandwich beam with graded corrugated lattice core. Compos. Struct., 229(1) (2019) 335-344.
  • [17] Temel B. and Noori A. R. Out-of-plane vibrations of shear-deformable afg cycloidal beams with variable cross section. ‎Appl. Acoust., 155(1) (2019) 84-96.
  • [18] Aslan T. A., Noori A. R. and Temel B. Dynamic response of viscoelastic tapered cycloidal rods. Mech. Res. Commun., 92((2018) 8-14.
  • [19] Celebi K., Yarimpabuc D. and Tutuncu N. Free vibration analysis of functionally graded beams using complementary functions method. Arch. Appl. Mech., 88(5) (2018) 729-739.
  • [20] Yildirim S. and Tutuncu N. Effect of magneto-thermal loads on the rotational instability of heterogeneous rotors. AIAA J., 57(5) (2019) 2069-2074.
  • [21] Aktas Z. Numerical solutions of two-point boundary value problems. Ankara, Turkey: METU, Dept of Computer Eng, (1972).
  • [22] Roberts S. and Shipman J. Fundamental matrix and two-point boundary-value problems. J. Optimiz. Theory. App., 28(1) (1979) 77-88.
  • [23] Tutuncu N. and Temel B. A novel approach to stress analysis of pressurized fgm cylinders, disks and spheres. Compos. Struct., 91(3) (2009) 385-390.
  • [24] Temel B. and Noori A.R. Transient analysis of laminated composite parabolic arches of uniform thickness. Mech. Based Des. Struc., 47(5) (2019) 546-554.
  • [25] Temel B. and Noori A.R. On the vibration analysis of laminated composite parabolic arches with variable cross-section of various ply stacking sequences, Mech. Adv. Mater. Struc. (2018).
There are 25 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Sefa Yıldırım 0000-0002-9204-5868

Publication Date June 25, 2020
Submission Date December 17, 2019
Acceptance Date April 10, 2020
Published in Issue Year 2020Volume: 41 Issue: 2

Cite

APA Yıldırım, S. (2020). An efficient method for the plane vibration analysis of composite sandwich beam with an orthotropic core. Cumhuriyet Science Journal, 41(2), 521-526. https://doi.org/10.17776/csj.660226