Research Article
BibTex RIS Cite
Year 2020, Volume: 41 Issue: 2, 377 - 385, 25.06.2020
https://doi.org/10.17776/csj.715714

Abstract

Supporting Institution

Fırat Üniversitesi

Project Number

FF.18.18

References

  • [1] Wilson J., Poddar P., Frey N., Srikanth H., Mohomed K., Harmon J., Kotha S. and Wachsmuth J. Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. Journal of Applied Physics, 95 (2004) 1439-1443.
  • [2] Frounchi M., Hadi M. Effect of synthesis method on magnetic and thermal properties of polyvinylidene fluoride/Fe3O4 nanocomposites. Journal of Reinforced Plastics and Composites, 32 (2013) 1044-1051.
  • [3] Omidi M. H., Alibeygi M., Piri F. and Masoudifarid M. Polystyrene/magnetite nanocomposite synthesis and characterization: investigation of magnetic and electrical properties for using as microelectromechanical systems (MEMS). Materials Science-Poland, 35 (2017) 105-110.
  • [4] Chávez-Guajardo A. E., Medina-Llamas J. C., Maqueira L., Andrade C. A., Alves K. G. and de Melo C. P. Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chemical Engineering Journal, 281 (2015) 826-836.
  • [5] Haruna H., Pekdemir M. E., Tukur A. and Coşkun M. Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry, (2020) 1-9.
  • [6] Qiu F., He G., Hao M. and Zhang G. Enhancing the Mechanical and Electrical Properties of Poly (Vinyl Chloride)-Based Conductive Nanocomposites by Zinc Oxide Nanorods. Materials, 11 (2018) 2139.
  • [7] Tao Y., Feng W., Ding G. and Cheng G. Polyaniline nanorods/PVC composites with antistatic properties. Russian Journal of Physical Chemistry A, 89 (2015) 1445-1448.
  • [8] Habashy M. M., Abd-Elhady A. M., Elsad R. and Izzularab M. A. Performance of PVC/SiO 2 nanocomposites under thermal ageing. Applied Nanoscience, (2019) 1-9.
  • [9] Yazdani H., Hatami K., Khosravi E., Harper K. and Grady B. P. Strain-sensitive conductivity of carbon black-filled PVC composites subjected to cyclic loading. Carbon, 79 (2014) 393-405.
  • [10] Yao K., Gong J., Tian N., Lin Y., Wen X., Jiang Z., Na H. and Tang T. Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe 3 O 4 nanoparticles. Rsc Advances, 5 (2015) 31910-31919.
  • [11] Tukur A., Pekdemir M. E., Haruna H. and Coşkun M. Magnetic nanoparticle bonding to PVC with the help of click reaction: characterization, thermal and electrical investigation. Journal of Polymer Research, 27 (2020) 161.
  • [12] Ramesan M., Privya P., Jayakrishnan P., Kalaprasad G., Bahuleyan B. and Al‐Maghrabi M. Influence of magnetite nanoparticles on electrical, magnetic and thermal properties of chitin/cashew gum biopolymer nanocomposites. Polymer Composites, 39 (2018) E540-E549.
  • [13] Kirchberg S., Rudolph M., Ziegmann G. and Peuker U. Nanocomposites based on technical polymers and sterically functionalized soft magnetic magnetite nanoparticles: synthesis, processing, and characterization. Journal of Nanomaterials, 2012 (2012).
  • [14] Namanga J., Foba J., Ndinteh D. T., Yufanyi D. M. and Krause R. W. M. Synthesis and magnetic properties of a superparamagnetic nanocomposite “pectin-magnetite nanocomposite”. Journal of Nanomaterials, 2013 (2013).
  • [15] Aliabadi M., Shagholani H. Synthesis of a novel biocompatible nanocomposite of graphene oxide and magnetic nanoparticles for drug delivery. International journal of biological macromolecules, 98 (2017) 287-291.
  • [16] Singh R., Puri J. K., Sharma R. P., Malik A. K. and Ferretti V. Synthesis, characterization and structural aspects of 3-azidopropylsilatrane. Journal of Molecular Structure, 982 (2010) 107-112.
  • [17] González-Guisasola C., Ribes-Greus A. Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells. Polymer Testing, 67 (2018) 55-67.

Investigation of structural, thermal and dielectric properties of PVC/modified magnetic nanoparticle composites

Year 2020, Volume: 41 Issue: 2, 377 - 385, 25.06.2020
https://doi.org/10.17776/csj.715714

Abstract

Three different composites (5, 10, and 20 wt. %) were prepared using purified PVC and POH-g-N3PTMS-g-Fe3O4. Firstly, 3-azidopropyltrimethoxysilane was synthesized under reflux from 3-chlorotrimethoxysilane and sodium azide. Then, magnetic nanoparticle was bonded with the silane group of 3-azidopropyltrimethoxysilane. After that the 3-azidopropyltrimethoxysilane bearing magnetic nanoparticle undergo click reaction with propargyl alcohol, and then the composites were prepared. Some characterization, including FT-IR spectroscopy, SEM, Differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), and EDX images was performed to the composites. The DSC measurements showed that the click reaction of the 3-azidopropyltrimethoxysilane graft magnetic nanoparticles (N3PTMS-g-Fe3O4) reduced the glass transition temperature (Tg). Click reaction reduced the thermal stability of N3PTMS-g-Fe3O4. The thermal stabilities of the composites increased by increasing the compositional rate. It was found that the 10% PVC /POH-g-N3PTMS-g-Fe3O4 reached saturation magnetization (Ms) at 5.12 emu/g. The dielectric constant (ε´) and dielectric loss (″) of POH-g-N3PTMS-g-Fe3O4 rapidly decreased with increasing applied frequency and then remain more or less constant. Also, the AC conductivity (ac) increased sharply with increasing the applied frequency. While the ε´ decreased slightly for the composites by increasing the applied frequency and the ac increase dramatically with an increase in applied frequency at room temperature.

Project Number

FF.18.18

References

  • [1] Wilson J., Poddar P., Frey N., Srikanth H., Mohomed K., Harmon J., Kotha S. and Wachsmuth J. Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. Journal of Applied Physics, 95 (2004) 1439-1443.
  • [2] Frounchi M., Hadi M. Effect of synthesis method on magnetic and thermal properties of polyvinylidene fluoride/Fe3O4 nanocomposites. Journal of Reinforced Plastics and Composites, 32 (2013) 1044-1051.
  • [3] Omidi M. H., Alibeygi M., Piri F. and Masoudifarid M. Polystyrene/magnetite nanocomposite synthesis and characterization: investigation of magnetic and electrical properties for using as microelectromechanical systems (MEMS). Materials Science-Poland, 35 (2017) 105-110.
  • [4] Chávez-Guajardo A. E., Medina-Llamas J. C., Maqueira L., Andrade C. A., Alves K. G. and de Melo C. P. Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chemical Engineering Journal, 281 (2015) 826-836.
  • [5] Haruna H., Pekdemir M. E., Tukur A. and Coşkun M. Characterization, thermal and electrical properties of aminated PVC/oxidized MWCNT composites doped with nanographite. Journal of Thermal Analysis and Calorimetry, (2020) 1-9.
  • [6] Qiu F., He G., Hao M. and Zhang G. Enhancing the Mechanical and Electrical Properties of Poly (Vinyl Chloride)-Based Conductive Nanocomposites by Zinc Oxide Nanorods. Materials, 11 (2018) 2139.
  • [7] Tao Y., Feng W., Ding G. and Cheng G. Polyaniline nanorods/PVC composites with antistatic properties. Russian Journal of Physical Chemistry A, 89 (2015) 1445-1448.
  • [8] Habashy M. M., Abd-Elhady A. M., Elsad R. and Izzularab M. A. Performance of PVC/SiO 2 nanocomposites under thermal ageing. Applied Nanoscience, (2019) 1-9.
  • [9] Yazdani H., Hatami K., Khosravi E., Harper K. and Grady B. P. Strain-sensitive conductivity of carbon black-filled PVC composites subjected to cyclic loading. Carbon, 79 (2014) 393-405.
  • [10] Yao K., Gong J., Tian N., Lin Y., Wen X., Jiang Z., Na H. and Tang T. Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe 3 O 4 nanoparticles. Rsc Advances, 5 (2015) 31910-31919.
  • [11] Tukur A., Pekdemir M. E., Haruna H. and Coşkun M. Magnetic nanoparticle bonding to PVC with the help of click reaction: characterization, thermal and electrical investigation. Journal of Polymer Research, 27 (2020) 161.
  • [12] Ramesan M., Privya P., Jayakrishnan P., Kalaprasad G., Bahuleyan B. and Al‐Maghrabi M. Influence of magnetite nanoparticles on electrical, magnetic and thermal properties of chitin/cashew gum biopolymer nanocomposites. Polymer Composites, 39 (2018) E540-E549.
  • [13] Kirchberg S., Rudolph M., Ziegmann G. and Peuker U. Nanocomposites based on technical polymers and sterically functionalized soft magnetic magnetite nanoparticles: synthesis, processing, and characterization. Journal of Nanomaterials, 2012 (2012).
  • [14] Namanga J., Foba J., Ndinteh D. T., Yufanyi D. M. and Krause R. W. M. Synthesis and magnetic properties of a superparamagnetic nanocomposite “pectin-magnetite nanocomposite”. Journal of Nanomaterials, 2013 (2013).
  • [15] Aliabadi M., Shagholani H. Synthesis of a novel biocompatible nanocomposite of graphene oxide and magnetic nanoparticles for drug delivery. International journal of biological macromolecules, 98 (2017) 287-291.
  • [16] Singh R., Puri J. K., Sharma R. P., Malik A. K. and Ferretti V. Synthesis, characterization and structural aspects of 3-azidopropylsilatrane. Journal of Molecular Structure, 982 (2010) 107-112.
  • [17] González-Guisasola C., Ribes-Greus A. Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells. Polymer Testing, 67 (2018) 55-67.
There are 17 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Abdulrahman Tukur 0000-0002-6910-8533

Mustafa Ersin Pekdemir 0000-0002-4979-1777

Mehmet Coşkun 0000-0002-2379-1795

Project Number FF.18.18
Publication Date June 25, 2020
Submission Date April 7, 2020
Acceptance Date June 4, 2020
Published in Issue Year 2020Volume: 41 Issue: 2

Cite

APA Tukur, A., Pekdemir, M. E., & Coşkun, M. (2020). Investigation of structural, thermal and dielectric properties of PVC/modified magnetic nanoparticle composites. Cumhuriyet Science Journal, 41(2), 377-385. https://doi.org/10.17776/csj.715714