Loading [a11y]/accessibility-menu.js
Year 2021 ,
Volume: 42 Issue: 2, 321 - 326, 30.06.2021
Tülay Yıldırım
References
[1] Kosan M. T., Lero A., Matczuk J. UJ rings, Commun. Algebra, 46 (5) (2018) 2297-2303.
[2] Nicholson W.K., Lifting idempotent and exchange rings, Trans. Amer. Math. Soc., 229 (1977) 269-278.
[3] Nicholso W.K., Zhou Y., Clean general rings, J. Algebra, 291 (2005) 297-311.
[4] Lam T.Y., A First Course in Noncommutative Rings, GTM 131, 2nd ed. Verlag: Springer, (1991) 53-82.
[5] Haghany A., Hopficity and co-hopficity for Morita contexts, Commun. Algebra, 27 (1999) 477-492.
[6] Kosan M. T., The p.p. property of trivial extensions, J. Algebra Appl., 14 (8) (2015) 1550124.
[7] Nicholson W.K., Zhou Y., Rings in which elements are uniquely the sum of an idempotent and a unit, Glasgow Math. J., 46 (2004) 227-236.
Remarks on the group of unıts of a corner ring
Year 2021 ,
Volume: 42 Issue: 2, 321 - 326, 30.06.2021
Tülay Yıldırım
Abstract
The aim of this study is to characterize rings having the following properties for a non-trivial idempotent element e of R, U (eRe) = e + eJ(R)e = e + J (eRe) (and U (eRe) = e + N (eRe)), where U (-), N (-) and J (-) denote the group of units, the set of all nilpotent elements and the Jacobson radical of R, respectively. In the present paper, some characterizations are also obtained in terms of every element is of the form e + u, where e2 = e ∈ R and u ∈ U(eRe).
References
[1] Kosan M. T., Lero A., Matczuk J. UJ rings, Commun. Algebra, 46 (5) (2018) 2297-2303.
[2] Nicholson W.K., Lifting idempotent and exchange rings, Trans. Amer. Math. Soc., 229 (1977) 269-278.
[3] Nicholso W.K., Zhou Y., Clean general rings, J. Algebra, 291 (2005) 297-311.
[4] Lam T.Y., A First Course in Noncommutative Rings, GTM 131, 2nd ed. Verlag: Springer, (1991) 53-82.
[5] Haghany A., Hopficity and co-hopficity for Morita contexts, Commun. Algebra, 27 (1999) 477-492.
[6] Kosan M. T., The p.p. property of trivial extensions, J. Algebra Appl., 14 (8) (2015) 1550124.
[7] Nicholson W.K., Zhou Y., Rings in which elements are uniquely the sum of an idempotent and a unit, Glasgow Math. J., 46 (2004) 227-236.
There are 7 citations in total.
Cite
APA
Yıldırım, T. (2021). Remarks on the group of unıts of a corner ring. Cumhuriyet Science Journal, 42(2), 321-326. https://doi.org/10.17776/csj.745918