Research Article
BibTex RIS Cite
Year 2022, Volume: 43 Issue: 4, 621 - 628, 27.12.2022
https://doi.org/10.17776/csj.1003429

Abstract

Bu çalışmada, aşılama stratejisi kullanılarak yeni polimer-protein konjugatlarının sentezi foto-indüklenmiş elektron transferi tersinir ekleme-parçalanma zincir transferi (PET-RAFT) polimerizasyonu ile gerçekleştirilmiştir. D-aminoaçilaz, kiral amino asitlerin hazırlanmasında kullanılan endüstriyel olarak önemli bir enzimdir ve aktive edilmiş ester kimyası kullanılarak tersinir ekleme-parçalama (RAFT) zincir transfer maddesi (CTA) ile birleştirilir. Polimerik yan zincir bileşimlerinin D-aminoaçilaz aktivitesi üzerindeki etkileri, iki farklı polimerik yan zincir uzunluğu ile incelenmiştir. Bu nedenle sırasıyla hidrofilik N-(2-aminoetil akrilamid) ve hidrofobik ve N-(izo-bütoksimetil) akrilamid olmak üzere iki farklı monomer kullanılmıştır. D-aminoaçilaz enziminin aşılama stratejisi ile modifikasyonun, enziminin termal stabilitesini arttırdığı bulundu. Ek olarak, hidrofobik monomer konjugatının, enzimin aktivitesini hidrofilik monomerden daha fazla arttırdığı rapor edilmiştir.

Supporting Institution

Tokat Gaziosmanpaşa Üniversitesi

Project Number

2014/59

References

  • [1] Filice M., Aragon C., Mateo C., Palomo J., Enzymatic Transformations in Food Chemistry, Current Organic Chemistry, 21(2) (2016) 139–148.
  • [2] Sheldon R. A., ve Pereira P. C., Biocatalysis engineering: The big picture, Chemical Society Reviews, 46(10) (2017) 2678–2691.
  • [3] Wright T. A., Page R. C., Konkolewicz D., Polymer conjugation of proteins as a synthetic post-translational modification to impact their stability and activity, Polymer Chemistry, 10 (2019), 434-454.
  • [4] Lucius M., Falatach R., McGlone C., Makaroff K., Danielson A., Williams C., Nix J. C., Konkolewicz D., Page R. C., Berberich J. A., Investigating the Impact of Polymer Functional Groups on the Stability and Activity of Lysozyme-Polymer Conjugates, Biomacromolecules, 17(3) (2016) 1123-1134.
  • [5] Rodriguez-Martinez J. A., Rivera-Rivera I., Sola R. J., Griebenow K., Enzymatic activity and thermal stability of PEG-α-chymotrypsin conjugates, Biotechnology Letters, 31(6) (2009) 883-887.
  • [6] Kaupbayeva B., Russell A. J., Polymer-enhanced biomacromolecules, Progress in Polymer Science, 101 (2020) 101194.
  • [7] Xie Y., An J., Yang G., Wu G., Zhang Y., Cui L., Feng Y., Enhanced enzyme kinetic stability by increasing rigidity within the active site, Journal of Biological Chemistry, 289(11) (2014) 7994-8006.
  • [8] Wallat J. D., Rose K. A., Pokorski J. K., Proteins as substrates for controlled radical polymerization, Polymer Chemistry, 5 (2014) 1545-1558.
  • [9] Li S., Chung H. S., Simakova A., Wang Z., Park S., Fu L., Cohen-Karni D., Averick S., Matyjaszewski K., Biocompatible Polymeric Analogues of DMSO Prepared by Atom Transfer Radical Polymerization, Biomacromolecules, 18(2) (2017) 475–482.
  • [10] Li H., Li M., Yu X., Bapat A. P., Sumerlin B. S., Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT, Polymer Chemistry, 2 (2011) 1531-1535.
  • [11] Li M., Li H., De P., Sumerlin B. S., Thermoresponsive block copolymer-protein conjugates prepared by grafting-from via RAFT polymerization, Macromolecular Rapid Communications, 32 (2011) 354-359.
  • [12] Liu J., Bulmus V., Herlambang D. L., Barner-Kowollik C., Stenzel M. H., Davis T. P., In situ formation of protein-polymer conjugates through reversible addition-fragmentation chain transfer polymerization, Angewandte Chemie - International Edition, 46(17) (2007) 3099-3103.
  • [13] Li X., Wang L., Chen G., Haddleton D. M., Chen H., Visible light-induced fast synthesis of protein-polymer conjugates: Controllable polymerization and protein activity, Chemical Communications 50 (2014) 6506-6508.
  • [14] Jenkins A. D., Jones R. G., Moad G., Terminology for Reversible-Deactivation Radical Polymerization Previously Called ‘Controlled’ Radical or ‘Living’ Radical Polymerization (IUPAC Recommendations 2010), Pure Appl. Chem., 82 (2) (2009) 483−491.
  • [15] Parkatzidis K. Wang H. S., Truong N. P., Anastasaki A., Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020 Update, Chem., 6(7) (2020) 1575−1588.
  • [16] Braunecker W. A., Matyjaszewski K., Controlled/Living Radical Polymerization: Features, Developments, and Perspectives, Prog. Polym. Sci., 32 (1) (2007) 93−146.
  • [17] Goto A., Fukuda T., Kinetics of Living Radical Polymerization, Prog. Polym. Sci., 29 (4) (2004) 329−385.
  • [18] Chong B. Y. K., Le T. P. T., Moad G., Rizzardo E., Thang S.H., More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process, Macromolecules, 32 (6) (1999) 2071−2074.
  • [19] Perrier S., 50th Anniversary Perspective: RAFT Polymerization - A User Guide, Macromolecules, 50 (19) (2017) 7433−7447.
  • [20] McKenzie T. G., Fu Q., Uchiyama M., Satoh K., Xu J., Boyer C., Kamigaito M., Qiao G. G., Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization, Adv. Sci., 3 (9) (2016) 1−9.
  • [21] Dolinski N. D., Page Z. A., Discekici E. H., Meis D., Lee I.-H., Jones G. R., Whitfield R., Pan X., McCarthy B. G., Shanmugam S., Kottisch V., Fors B. P., Boyer C., Miyake G. M., Matyjaszewski K., Haddleton D. M., Alaniz J. R., Anastasaki A., Hawker C. J., What Happens in the Dark? Assessing the Temporal Control of Photo Mediated Controlled Radical Polymerizations, J. Polym. Sci., Part A: Polym. Chem., 57 (3) (2019) 268−273.
  • [22] Pan X., Tasdelen M. A., Laun J., Junkers T., Yagci Y., Matyjaszewski K., Photomediated Controlled Radical Polymerization, Prog. Polym. Sci., 62 (2016) 73−125.
  • [23] Theodorou A., Liarou E., Haddleton D. M., Stavrakaki I. G., Skordalidis P., Whitfield R., Anastasaki A., Velonia K., Protein Polymer Bioconjugates via a Versatile Oxygen Tolerant Photoinduced Controlled Radical Polymerization Approach, Nat. Commun., 11(1) (2020) 1−11.
  • [24] Jung K., Corrigan N., Ciftci M., Xu J., Seo S. E., Hawker C. J., Boyer C., Designing with Light: Advanced 2D, 3D, and 4D, Materials, Adv. Mater., 32 (18) (2020) 1−21.
  • [25] Allegrezza M. L., Konkolewicz D., PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials, ACS Macro Letters, 10(4) (2021) 433-446.
  • [26] Li X., Wang L., Chen G., Haddletonc D. M., Chen H., Visible light-induced fast synthesis of protein-polymer conjugates: controllable polymerization and protein activity, Chem. Commun., 50 (2014) 6506-6508.
  • [27] Tucker B. S., Coughlin M. L., Figg C. A., Sumerlin B. S., Grafting-From Proteins using Metal-Free PET-RAFT Polymerizations under Mild Visible-Light Irradiation, ACS Macro Letters, 6 (4) (2017) 452–457.
  • [28] Wang W., Xi H., Bi Q., Hu Y., Zhang Y., Ni M., Cloning, expression, and characterization of d-aminoacylase from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173, Microbiological Research, 168(6) (2013) 360–366.
  • [29] Schulze B., Wubbolts M. G., Biocatalysis for industrial production of fine chemicals, Current Opinion in Biotechnology, 10(6) (1999) 609-615.
  • [30] King B., Lessard B. H., Controlled Synthesis and Degradation of Poly(N-(isobutoxymethyl) acrylamide) Homopolymers and Block Copolymers, Macromolecular Reaction Engineering 11(2) (2017) 1600073.
  • [31] Kotsuchibashi Y., Ebara M., Idota N., Narain R., Aoyagi T., A ‘smart’ approach towards the formation of multifunctional nano-assemblies by simple mixing of block copolymers having a common temperature sensitive segment, Polymer Chemistry, 3(5) (2012) 1150-1157.
  • [32] Dragan E. S., Perju M. M., Preparation and Swelling Behavior of Chitosan Poly (N-2-Aminoethyl Acrylamide) Composite Hydrogels, Soft Materials, 8(1) (2010) 49–62.
  • [33] İncir İ., Kaplan Ö., Bilgin S., Gökçe İ., Development of a Fluorescent Protein-Based FRET Biosensor for Determination of Protease Activity, Sakarya University Journal of Science, 25(5) (2021) 1235-1244.
  • [34] Kaplan Ö., İmamoğlu R., Şahingöz İ., Gökçe İ., Recombinant production of Thermus aquaticus single-strand binding protein for usage as PCR enhancer, International Advanced Researches and Engineering Journal 05(01) (2021) 042-046.
  • [35] Paeth M., Stapleton J., Dougherty M. L., Fischesser H., Shepherd J., McCauley M., Falatach R., Page R. C., Berberich J. A., Konkolewicz D., Approaches for Conjugating Tailor-Made Polymers to Proteins, Methods in Enzymology, 590 (2017) 193-224.
  • [36] Zobrist C., Sobocinski J., Lyskawa J., Fournier D., Miri V., Traisnel M., Jimenez M., Woisel P., Functionalization of titanium surfaces with polymer brushes prepared from a biomimetic RAFT agent, Macromolecules, 44(15) (2011) 5883–5892.
  • [37] Kovaliov M., Allegrezza M. L., Richter B., Konkolewicz D., Averick S., Synthesis of lipase polymer hybrids with retained or enhanced activity using the grafting-from strategy, Polymer, 137 (2018) 337-345.
  • [38] Fields R., The Rapid Determination of Amino Groups with TNBS, Methods in Enzymology, 25 (1972) 464-468.
  • [39] Obermeyer A. C., Olsen, B. D., Synthesis and application of protein-containing block copolymers, ACS Macro Letters, 4(1) (2015) 101-110.
  • [40] Heredia K. L., Maynard H. D., Synthesis of protein-polymer conjugates, Organic and Biomolecular Chemistry, 5 (2007) 45-53.
  • [41] Wallat J. D., Rose K. A., Pokorski J. K., Proteins as substrates for controlled radical polymerization, Polymer Chemistry, 5 (2014) 1545-1558.
  • [42] Cai J., Chen T., Xu Y., Wei S., Huang W., Liu R., Liu J., A versatile signal-enhanced ECL sensing platform based on molecular imprinting technique via PET-RAFT cross-linking polymerization using bifunctional ruthenium complex as both catalyst and sensing probes, Biosensors and Bioelectronics, 124 (125) (2019) 15-24.
  • [43] Falatach R., McGlone C., Al-Abdul-Wahid M. S., Averick S., Page R. C., Berberich J. A., Konkolewicz D., The best of both worlds: Active enzymes by grafting-to followed by grafting-from a protein, Chemical Communications, 51 (2015) 5343-5346.
  • [44] Barre A., Tintas M. L., Levacher V., Papamicael C., Gembus V., An Overview of the Synthesis of Highly Versatile N-Hydroxysuccinimide Esters, Synthesis, (49) (2017) 472-483.
  • [45] Sumerlin B. S., Proteins as initiators of controlled radical polymerization: Grafting from via ATRP and RAFT, ACS Macro Letters, 1 (2012) 141−145.
  • [46] Messina M. S., Messina K. M. M., Bhattacharya A., Montgomery H. R., Maynard H. D., Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP, Progress in Polymer Science, 100 (2020) 101186.

Activity Improvement and Thermal Stability Enhancement of D-Aminoacylase Using Protein-Polymer Conjugates

Year 2022, Volume: 43 Issue: 4, 621 - 628, 27.12.2022
https://doi.org/10.17776/csj.1003429

Abstract

In this study, the synthesis of new polymer-protein conjugates using a grafting-from strategy was performed by employing photo-induced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. D-aminoacylase is an industrially significant enzyme for the preparation of chiral amino acids and it is coupled with reversible addition-fragmentation (RAFT) chain transfer agent (CTA) using activated ester chemistry. The effects of polymeric side chain compositions on the activity of D-aminoacylase were studied with two different polymeric side chain lengths. For this reason, two monomers, a hydrophilic N-(2-aminoethyl acrylamide) and a hydrophobic and N- (iso-butoxymethyl) acrylamide were used, respectively. It was found that modification by grafting from strategy increased the thermal stability of D-aminoacylase enzyme. Additionally, the hydrophobic monomer conjugate has been reported to increase the activity of the enzyme more than the hydrophilic monomer.

Project Number

2014/59

References

  • [1] Filice M., Aragon C., Mateo C., Palomo J., Enzymatic Transformations in Food Chemistry, Current Organic Chemistry, 21(2) (2016) 139–148.
  • [2] Sheldon R. A., ve Pereira P. C., Biocatalysis engineering: The big picture, Chemical Society Reviews, 46(10) (2017) 2678–2691.
  • [3] Wright T. A., Page R. C., Konkolewicz D., Polymer conjugation of proteins as a synthetic post-translational modification to impact their stability and activity, Polymer Chemistry, 10 (2019), 434-454.
  • [4] Lucius M., Falatach R., McGlone C., Makaroff K., Danielson A., Williams C., Nix J. C., Konkolewicz D., Page R. C., Berberich J. A., Investigating the Impact of Polymer Functional Groups on the Stability and Activity of Lysozyme-Polymer Conjugates, Biomacromolecules, 17(3) (2016) 1123-1134.
  • [5] Rodriguez-Martinez J. A., Rivera-Rivera I., Sola R. J., Griebenow K., Enzymatic activity and thermal stability of PEG-α-chymotrypsin conjugates, Biotechnology Letters, 31(6) (2009) 883-887.
  • [6] Kaupbayeva B., Russell A. J., Polymer-enhanced biomacromolecules, Progress in Polymer Science, 101 (2020) 101194.
  • [7] Xie Y., An J., Yang G., Wu G., Zhang Y., Cui L., Feng Y., Enhanced enzyme kinetic stability by increasing rigidity within the active site, Journal of Biological Chemistry, 289(11) (2014) 7994-8006.
  • [8] Wallat J. D., Rose K. A., Pokorski J. K., Proteins as substrates for controlled radical polymerization, Polymer Chemistry, 5 (2014) 1545-1558.
  • [9] Li S., Chung H. S., Simakova A., Wang Z., Park S., Fu L., Cohen-Karni D., Averick S., Matyjaszewski K., Biocompatible Polymeric Analogues of DMSO Prepared by Atom Transfer Radical Polymerization, Biomacromolecules, 18(2) (2017) 475–482.
  • [10] Li H., Li M., Yu X., Bapat A. P., Sumerlin B. S., Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT, Polymer Chemistry, 2 (2011) 1531-1535.
  • [11] Li M., Li H., De P., Sumerlin B. S., Thermoresponsive block copolymer-protein conjugates prepared by grafting-from via RAFT polymerization, Macromolecular Rapid Communications, 32 (2011) 354-359.
  • [12] Liu J., Bulmus V., Herlambang D. L., Barner-Kowollik C., Stenzel M. H., Davis T. P., In situ formation of protein-polymer conjugates through reversible addition-fragmentation chain transfer polymerization, Angewandte Chemie - International Edition, 46(17) (2007) 3099-3103.
  • [13] Li X., Wang L., Chen G., Haddleton D. M., Chen H., Visible light-induced fast synthesis of protein-polymer conjugates: Controllable polymerization and protein activity, Chemical Communications 50 (2014) 6506-6508.
  • [14] Jenkins A. D., Jones R. G., Moad G., Terminology for Reversible-Deactivation Radical Polymerization Previously Called ‘Controlled’ Radical or ‘Living’ Radical Polymerization (IUPAC Recommendations 2010), Pure Appl. Chem., 82 (2) (2009) 483−491.
  • [15] Parkatzidis K. Wang H. S., Truong N. P., Anastasaki A., Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020 Update, Chem., 6(7) (2020) 1575−1588.
  • [16] Braunecker W. A., Matyjaszewski K., Controlled/Living Radical Polymerization: Features, Developments, and Perspectives, Prog. Polym. Sci., 32 (1) (2007) 93−146.
  • [17] Goto A., Fukuda T., Kinetics of Living Radical Polymerization, Prog. Polym. Sci., 29 (4) (2004) 329−385.
  • [18] Chong B. Y. K., Le T. P. T., Moad G., Rizzardo E., Thang S.H., More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process, Macromolecules, 32 (6) (1999) 2071−2074.
  • [19] Perrier S., 50th Anniversary Perspective: RAFT Polymerization - A User Guide, Macromolecules, 50 (19) (2017) 7433−7447.
  • [20] McKenzie T. G., Fu Q., Uchiyama M., Satoh K., Xu J., Boyer C., Kamigaito M., Qiao G. G., Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization, Adv. Sci., 3 (9) (2016) 1−9.
  • [21] Dolinski N. D., Page Z. A., Discekici E. H., Meis D., Lee I.-H., Jones G. R., Whitfield R., Pan X., McCarthy B. G., Shanmugam S., Kottisch V., Fors B. P., Boyer C., Miyake G. M., Matyjaszewski K., Haddleton D. M., Alaniz J. R., Anastasaki A., Hawker C. J., What Happens in the Dark? Assessing the Temporal Control of Photo Mediated Controlled Radical Polymerizations, J. Polym. Sci., Part A: Polym. Chem., 57 (3) (2019) 268−273.
  • [22] Pan X., Tasdelen M. A., Laun J., Junkers T., Yagci Y., Matyjaszewski K., Photomediated Controlled Radical Polymerization, Prog. Polym. Sci., 62 (2016) 73−125.
  • [23] Theodorou A., Liarou E., Haddleton D. M., Stavrakaki I. G., Skordalidis P., Whitfield R., Anastasaki A., Velonia K., Protein Polymer Bioconjugates via a Versatile Oxygen Tolerant Photoinduced Controlled Radical Polymerization Approach, Nat. Commun., 11(1) (2020) 1−11.
  • [24] Jung K., Corrigan N., Ciftci M., Xu J., Seo S. E., Hawker C. J., Boyer C., Designing with Light: Advanced 2D, 3D, and 4D, Materials, Adv. Mater., 32 (18) (2020) 1−21.
  • [25] Allegrezza M. L., Konkolewicz D., PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials, ACS Macro Letters, 10(4) (2021) 433-446.
  • [26] Li X., Wang L., Chen G., Haddletonc D. M., Chen H., Visible light-induced fast synthesis of protein-polymer conjugates: controllable polymerization and protein activity, Chem. Commun., 50 (2014) 6506-6508.
  • [27] Tucker B. S., Coughlin M. L., Figg C. A., Sumerlin B. S., Grafting-From Proteins using Metal-Free PET-RAFT Polymerizations under Mild Visible-Light Irradiation, ACS Macro Letters, 6 (4) (2017) 452–457.
  • [28] Wang W., Xi H., Bi Q., Hu Y., Zhang Y., Ni M., Cloning, expression, and characterization of d-aminoacylase from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173, Microbiological Research, 168(6) (2013) 360–366.
  • [29] Schulze B., Wubbolts M. G., Biocatalysis for industrial production of fine chemicals, Current Opinion in Biotechnology, 10(6) (1999) 609-615.
  • [30] King B., Lessard B. H., Controlled Synthesis and Degradation of Poly(N-(isobutoxymethyl) acrylamide) Homopolymers and Block Copolymers, Macromolecular Reaction Engineering 11(2) (2017) 1600073.
  • [31] Kotsuchibashi Y., Ebara M., Idota N., Narain R., Aoyagi T., A ‘smart’ approach towards the formation of multifunctional nano-assemblies by simple mixing of block copolymers having a common temperature sensitive segment, Polymer Chemistry, 3(5) (2012) 1150-1157.
  • [32] Dragan E. S., Perju M. M., Preparation and Swelling Behavior of Chitosan Poly (N-2-Aminoethyl Acrylamide) Composite Hydrogels, Soft Materials, 8(1) (2010) 49–62.
  • [33] İncir İ., Kaplan Ö., Bilgin S., Gökçe İ., Development of a Fluorescent Protein-Based FRET Biosensor for Determination of Protease Activity, Sakarya University Journal of Science, 25(5) (2021) 1235-1244.
  • [34] Kaplan Ö., İmamoğlu R., Şahingöz İ., Gökçe İ., Recombinant production of Thermus aquaticus single-strand binding protein for usage as PCR enhancer, International Advanced Researches and Engineering Journal 05(01) (2021) 042-046.
  • [35] Paeth M., Stapleton J., Dougherty M. L., Fischesser H., Shepherd J., McCauley M., Falatach R., Page R. C., Berberich J. A., Konkolewicz D., Approaches for Conjugating Tailor-Made Polymers to Proteins, Methods in Enzymology, 590 (2017) 193-224.
  • [36] Zobrist C., Sobocinski J., Lyskawa J., Fournier D., Miri V., Traisnel M., Jimenez M., Woisel P., Functionalization of titanium surfaces with polymer brushes prepared from a biomimetic RAFT agent, Macromolecules, 44(15) (2011) 5883–5892.
  • [37] Kovaliov M., Allegrezza M. L., Richter B., Konkolewicz D., Averick S., Synthesis of lipase polymer hybrids with retained or enhanced activity using the grafting-from strategy, Polymer, 137 (2018) 337-345.
  • [38] Fields R., The Rapid Determination of Amino Groups with TNBS, Methods in Enzymology, 25 (1972) 464-468.
  • [39] Obermeyer A. C., Olsen, B. D., Synthesis and application of protein-containing block copolymers, ACS Macro Letters, 4(1) (2015) 101-110.
  • [40] Heredia K. L., Maynard H. D., Synthesis of protein-polymer conjugates, Organic and Biomolecular Chemistry, 5 (2007) 45-53.
  • [41] Wallat J. D., Rose K. A., Pokorski J. K., Proteins as substrates for controlled radical polymerization, Polymer Chemistry, 5 (2014) 1545-1558.
  • [42] Cai J., Chen T., Xu Y., Wei S., Huang W., Liu R., Liu J., A versatile signal-enhanced ECL sensing platform based on molecular imprinting technique via PET-RAFT cross-linking polymerization using bifunctional ruthenium complex as both catalyst and sensing probes, Biosensors and Bioelectronics, 124 (125) (2019) 15-24.
  • [43] Falatach R., McGlone C., Al-Abdul-Wahid M. S., Averick S., Page R. C., Berberich J. A., Konkolewicz D., The best of both worlds: Active enzymes by grafting-to followed by grafting-from a protein, Chemical Communications, 51 (2015) 5343-5346.
  • [44] Barre A., Tintas M. L., Levacher V., Papamicael C., Gembus V., An Overview of the Synthesis of Highly Versatile N-Hydroxysuccinimide Esters, Synthesis, (49) (2017) 472-483.
  • [45] Sumerlin B. S., Proteins as initiators of controlled radical polymerization: Grafting from via ATRP and RAFT, ACS Macro Letters, 1 (2012) 141−145.
  • [46] Messina M. S., Messina K. M. M., Bhattacharya A., Montgomery H. R., Maynard H. D., Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP, Progress in Polymer Science, 100 (2020) 101186.
There are 46 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Sema Bilgin

Nazan Gökşen Tosun 0000-0001-5269-1067

Cemil Alkan 0000-0002-1509-4789

Esra Koç 0000-0001-7171-608X

Seçil Erden Tayhan 0000-0001-8473-5896

Project Number 2014/59
Publication Date December 27, 2022
Submission Date October 1, 2021
Acceptance Date October 2, 2022
Published in Issue Year 2022Volume: 43 Issue: 4

Cite

APA Bilgin, S., Gökşen Tosun, N., Alkan, C., Koç, E., et al. (2022). Activity Improvement and Thermal Stability Enhancement of D-Aminoacylase Using Protein-Polymer Conjugates. Cumhuriyet Science Journal, 43(4), 621-628. https://doi.org/10.17776/csj.1003429