Research Article
BibTex RIS Cite
Year 2023, Volume: 44 Issue: 1, 62 - 66, 26.03.2023
https://doi.org/10.17776/csj.1158670

Abstract

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi (FUBAP)

Project Number

FF.22.11

References

  • [1] Şule İ., Dalkiliç L. K., Kirbag S. And Dalkiliç S. Determination of The Antimicrobial, Antioxidant and Cytotoxic Activity of Paulownia tomentosa Steud, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24 (2021) 701-706.
  • [2] Ocak E., Inci S., Ozturk D., Safak S. A., Ozdeniz E., Kirbag S., Evren A. H. and Kurt L. Antimicrobial activities of some narrow endemic gypsopyhte, Journal of the Faculty of Pharmacy of Istanbul University, 51 (2021) 118-123.
  • [3] Kirbağ S., Keser S., Tekin S., İnci Ş. and Sandal S. Cytotoxic effect of endemic Tchihatchewia isatidea Boiss. from Turkey, Israel Journal of Plant Sciences, 68 (2021) 161-165.
  • [4] Tonny T. S., Sultana S. and Siddika F. Study on medicinal uses of Persicaria and Rumex species of polygonaceae family, Journal of Pharmacognosy and Phytochemistry, 6 (2017) 587-600.
  • [5] Süleyman H., Demirezer L. Ö., Kuruüzüm A., Banoğlu Z., Göçer F., Özbakir G. and Gepdiremen A. Antiinflammatory effect of the aqueous extract from Rumex patientia L. roots,Journal of ethnopharmacology, 65 (1999) 141-148.
  • [6] Ghosh L., Gayen J., Murugesan T., Sinha S., Pal M. and Saha B. Evaluation of purgative activity of roots of Rumex nepalensis, Fitoterapia, 74 (2003) 372-374.
  • [7] Demirezer L. Ö., Kuruüzüm-Uz A., Bergere I., Schiewe H.-J. and Zeeck A. The structures of antioxidant and cytotoxic agents from natural source: anthraquinones and tannins from roots of Rumex patientia, Phytochemistry, 58 (2001) 1213-1217.
  • [8] Rouf A., Islam M. and Rahman M. Evaluation of antidiarrhoeal activity Rumex maritimus root, Journal of ethnopharmacology, 84 (2003) 307-310.
  • [9] Gebrie E., Makonnen E., Debella A. and Zerihun L. Phytochemical screening and pharmacological evaluations for the antifertility effect of the methanolic root extract of Rumex steudelii, Journal of Ethnopharmacology, 96 (2005) 139-143.
  • [10] Cos P., Hermans N., De Bruyne T., Apers S., Sindambiwe J., Witvrouw M., De Clercq E., Berghe D. V., Pieters L. and Vlietinck A. Antiviral activity of Rwandan medicinal plants against human immunodeficiency virus type-1 (HIV-1),Phytomedicine, 9 (2002) 62-68.
  • [11] Elife K., Akbaş P., Ceyhan G., Erdem T. K. And Alkan H. Determination the Fatty Acid Composition of the Rumex patientia L. Leaves and in vitro Antimicrobial Activity of their Different Extracts, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24 (2020) 362-367.
  • [12] Jovin E., Simin N., Orcic D., Balog K., Beara I., Lesjak M. and Dukic N. M. Antioxidant and anti-inflammatory properties of Rumex patientia L, Planta Medica, 77 (2011) PM157.
  • [13] Jain A., Duvvuri L. S., Farah S., Beyth N., Domb A. J. and Khan W. Antimicrobial polymers, Advanced healthcare materials, 3 (2014) 1969-1985.
  • [14] Kamaruzzaman N. F., Tan L. P., Hamdan R. H., Choong S. S., Wong W. K., Gibson A. J., Chivu A. and Pina M. d. F. Antimicrobial polymers: the potential replacement of existing antibiotics?, International Journal of Molecular Sciences, 20 (2019) 2747.
  • [15] Jia W. J., Gu Y. C., Gou M. L., Dai M., Li X. Y., Kan B., Yang J. L., Song Q. F., Wei Y. Q. and Qian Z. Y. Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug delivery, 15 (2008) 409-416.
  • [16] Zhang Y. and Zhuo R.-x. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone, Biomaterials, 26 (2005) 6736-6742.
  • [17] Xu Q., Ren X., Chang Y., Wang J., Yu L. and Dean K. Generation of microcellular biodegradable polycaprolactone foams in supercritical carbon dioxide, Journal of Applied Polymer Science, 94 (2004) 593-597.
  • [18] Pekdemir M. E., Qader I. N., Öner E., Aydoğmuş E., Kök M. and Dağdelen F. Investigation of structure, mechanical, and shape memory behavior of thermally activated poly (ε-caprolactone): azide-functionalized poly (vinyl chloride) binary polymer blend films, The European Physical Journal Plus, 136 (2021) 1-14.
  • [19] Li Q., Li G., Yu S., Zhang Z., Ma F. and Feng Y. Ring-opening polymerization of ɛ-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum, Process Biochemistry, 46 (2011) 253-257.
  • [20] Peeters J. W., van Leeuwen O., Palmans A. R. and Meijer E. Lipase-catalyzed ring-opening polymerizations of 4-substituted ε-caprolactones: mechanistic considerations, Macromolecules, 38 (2005) 5587-5592.
  • [21] Woodruff M. A. and Hutmacher D. W. The return of a forgotten polymer—Polycaprolactone in the 21st century, Progress in polymer science, 35 (2010) 1217-1256.
  • [22] Pekdemir M. E., Öner E., Kök M. and Qader I. N. Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers, Iranian Polymer Journal, 30 (2021) 633-641.
  • [23] Pekdemir S., Çiftci M. and Karatepe M. Elazığ’da Yetişen Polygonum cognatum Meissn (Madımak) Bitki Ekstraktlarının In vitro Biyolojik Aktiviteleri ve Bazı Fitokimyasal Bileşenlerinin Belirlenmesi, Avrupa Bilim ve Teknoloji Dergisi, (2020) 368-378.
  • [24] Pekdemir M. E., Pekdemir S., İnci Ş., Kırbağ S. and Çiftci M. Thermal, magnetic properties and antimicrobial effects of magnetic iron oxide nanoparticles treated with Polygonum cognatum, Iranian Journal of Science and Technology, Transactions A: Science, 45 (2021) 1579-1586.
  • [25] Sönmez P. E., Kirbağ S. and Şule İ. Antifungal and antibacterial effect of dodder (Cuscuta campestris) used for hepatitis treatment of mothers and newborn infants in province Mardin in Turkey, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (2019) 722-730.
  • [26] Pekdemir S., Özen Öner E., Pekdemir M. E., Dalkılıç S. and Kadıoğlu Dalkılıç L. An Investigation into the Influence of C. moschata Leaves Extract on Physicochemical and Biological Properties of Biodegradable PCL/PLA Blend Film, Journal of Polymers and the Environment, (2022) 1-11.
  • [27] Shoja M., Shameli K., Ahmad M. and Zakaria Z. Preparation and characterization of Poly (ε-Caprolactone)/TiO 2 micro-composites, Digest Journal of Nanomaterials and Biostructures, 10 (2015) 471-477.
  • [28] Qader I. N., Pekdemir M. E., Coşkun M., Kanca M. S., Kök M. And Dağdelen F. Biocompatible PLA/PCL blends nanocomposites doped with nanographite: Physico-chemical, and thermal behaviour, Journal of Polymer Research, 29 (2022) 1-8.
  • [29] İlboğa S., Pekdemir E. and Coşkun M. Cloud Point Temperature, Thermal and Dielectrical Behaviors of Thermosensitive Block Copolymers Based N-Isopropylacrylamide, Polymer Science, Series B, 61 (2019) 32-41.
  • [30] Silverstein R. M. and Bassler G. C. Spectrometric identification of organic compounds, Journal of Chemical Education, 39 (1962) 546.
  • [31] Xing H., Lu M., Yang T., Liu H., Sun Y., Zhao X., Xu H., Yang L. and Ding P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers, Acta biomaterialia, 86 (2019) 15-40.

Antimicrobial Properties of Biocompatible Poly (Ɛ-Caprolactone) Treated with Plant Extract

Year 2023, Volume: 44 Issue: 1, 62 - 66, 26.03.2023
https://doi.org/10.17776/csj.1158670

Abstract

Poly (ɛ-caprolactone) (PCL) was synthesized using ethylene glycol initiator and catalyst accompanied by ring-opening polymerization method. The number average molecular weight (Mn) of the obtained polymer was found to be 4000 gmol-1. In addition, the characteristic signals of PCL were determined with Fourier-transform infrared spectroscopy (FT-IR). Decomposition temperatures were investigated by Thermogravimetric Analysis (TGA) and melting temperatures (Tm) were investigated by Differential Scanning Calorimetry (DSC). Tm of PCL at 57.3 °C was observed. PCL was treated with Rumex patientia L. ethanolic plant extract and its effects on Klebsiella pneumoniae ATCC 700603, Bacillus megaterium DSM32, Staphylococcus aureus ATCC25923, Escherichia coli ATCC25322, and Candida albicans FMC17 microorganisms were examined. It was determined that PCL, which did not show antimicrobial activity, showed antimicrobial activity on some microorganisms after being treated with the plant.

Project Number

FF.22.11

References

  • [1] Şule İ., Dalkiliç L. K., Kirbag S. And Dalkiliç S. Determination of The Antimicrobial, Antioxidant and Cytotoxic Activity of Paulownia tomentosa Steud, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24 (2021) 701-706.
  • [2] Ocak E., Inci S., Ozturk D., Safak S. A., Ozdeniz E., Kirbag S., Evren A. H. and Kurt L. Antimicrobial activities of some narrow endemic gypsopyhte, Journal of the Faculty of Pharmacy of Istanbul University, 51 (2021) 118-123.
  • [3] Kirbağ S., Keser S., Tekin S., İnci Ş. and Sandal S. Cytotoxic effect of endemic Tchihatchewia isatidea Boiss. from Turkey, Israel Journal of Plant Sciences, 68 (2021) 161-165.
  • [4] Tonny T. S., Sultana S. and Siddika F. Study on medicinal uses of Persicaria and Rumex species of polygonaceae family, Journal of Pharmacognosy and Phytochemistry, 6 (2017) 587-600.
  • [5] Süleyman H., Demirezer L. Ö., Kuruüzüm A., Banoğlu Z., Göçer F., Özbakir G. and Gepdiremen A. Antiinflammatory effect of the aqueous extract from Rumex patientia L. roots,Journal of ethnopharmacology, 65 (1999) 141-148.
  • [6] Ghosh L., Gayen J., Murugesan T., Sinha S., Pal M. and Saha B. Evaluation of purgative activity of roots of Rumex nepalensis, Fitoterapia, 74 (2003) 372-374.
  • [7] Demirezer L. Ö., Kuruüzüm-Uz A., Bergere I., Schiewe H.-J. and Zeeck A. The structures of antioxidant and cytotoxic agents from natural source: anthraquinones and tannins from roots of Rumex patientia, Phytochemistry, 58 (2001) 1213-1217.
  • [8] Rouf A., Islam M. and Rahman M. Evaluation of antidiarrhoeal activity Rumex maritimus root, Journal of ethnopharmacology, 84 (2003) 307-310.
  • [9] Gebrie E., Makonnen E., Debella A. and Zerihun L. Phytochemical screening and pharmacological evaluations for the antifertility effect of the methanolic root extract of Rumex steudelii, Journal of Ethnopharmacology, 96 (2005) 139-143.
  • [10] Cos P., Hermans N., De Bruyne T., Apers S., Sindambiwe J., Witvrouw M., De Clercq E., Berghe D. V., Pieters L. and Vlietinck A. Antiviral activity of Rwandan medicinal plants against human immunodeficiency virus type-1 (HIV-1),Phytomedicine, 9 (2002) 62-68.
  • [11] Elife K., Akbaş P., Ceyhan G., Erdem T. K. And Alkan H. Determination the Fatty Acid Composition of the Rumex patientia L. Leaves and in vitro Antimicrobial Activity of their Different Extracts, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24 (2020) 362-367.
  • [12] Jovin E., Simin N., Orcic D., Balog K., Beara I., Lesjak M. and Dukic N. M. Antioxidant and anti-inflammatory properties of Rumex patientia L, Planta Medica, 77 (2011) PM157.
  • [13] Jain A., Duvvuri L. S., Farah S., Beyth N., Domb A. J. and Khan W. Antimicrobial polymers, Advanced healthcare materials, 3 (2014) 1969-1985.
  • [14] Kamaruzzaman N. F., Tan L. P., Hamdan R. H., Choong S. S., Wong W. K., Gibson A. J., Chivu A. and Pina M. d. F. Antimicrobial polymers: the potential replacement of existing antibiotics?, International Journal of Molecular Sciences, 20 (2019) 2747.
  • [15] Jia W. J., Gu Y. C., Gou M. L., Dai M., Li X. Y., Kan B., Yang J. L., Song Q. F., Wei Y. Q. and Qian Z. Y. Preparation of biodegradable polycaprolactone/poly (ethylene glycol)/polycaprolactone (PCEC) nanoparticles. Drug delivery, 15 (2008) 409-416.
  • [16] Zhang Y. and Zhuo R.-x. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone, Biomaterials, 26 (2005) 6736-6742.
  • [17] Xu Q., Ren X., Chang Y., Wang J., Yu L. and Dean K. Generation of microcellular biodegradable polycaprolactone foams in supercritical carbon dioxide, Journal of Applied Polymer Science, 94 (2004) 593-597.
  • [18] Pekdemir M. E., Qader I. N., Öner E., Aydoğmuş E., Kök M. and Dağdelen F. Investigation of structure, mechanical, and shape memory behavior of thermally activated poly (ε-caprolactone): azide-functionalized poly (vinyl chloride) binary polymer blend films, The European Physical Journal Plus, 136 (2021) 1-14.
  • [19] Li Q., Li G., Yu S., Zhang Z., Ma F. and Feng Y. Ring-opening polymerization of ɛ-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum, Process Biochemistry, 46 (2011) 253-257.
  • [20] Peeters J. W., van Leeuwen O., Palmans A. R. and Meijer E. Lipase-catalyzed ring-opening polymerizations of 4-substituted ε-caprolactones: mechanistic considerations, Macromolecules, 38 (2005) 5587-5592.
  • [21] Woodruff M. A. and Hutmacher D. W. The return of a forgotten polymer—Polycaprolactone in the 21st century, Progress in polymer science, 35 (2010) 1217-1256.
  • [22] Pekdemir M. E., Öner E., Kök M. and Qader I. N. Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers, Iranian Polymer Journal, 30 (2021) 633-641.
  • [23] Pekdemir S., Çiftci M. and Karatepe M. Elazığ’da Yetişen Polygonum cognatum Meissn (Madımak) Bitki Ekstraktlarının In vitro Biyolojik Aktiviteleri ve Bazı Fitokimyasal Bileşenlerinin Belirlenmesi, Avrupa Bilim ve Teknoloji Dergisi, (2020) 368-378.
  • [24] Pekdemir M. E., Pekdemir S., İnci Ş., Kırbağ S. and Çiftci M. Thermal, magnetic properties and antimicrobial effects of magnetic iron oxide nanoparticles treated with Polygonum cognatum, Iranian Journal of Science and Technology, Transactions A: Science, 45 (2021) 1579-1586.
  • [25] Sönmez P. E., Kirbağ S. and Şule İ. Antifungal and antibacterial effect of dodder (Cuscuta campestris) used for hepatitis treatment of mothers and newborn infants in province Mardin in Turkey, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (2019) 722-730.
  • [26] Pekdemir S., Özen Öner E., Pekdemir M. E., Dalkılıç S. and Kadıoğlu Dalkılıç L. An Investigation into the Influence of C. moschata Leaves Extract on Physicochemical and Biological Properties of Biodegradable PCL/PLA Blend Film, Journal of Polymers and the Environment, (2022) 1-11.
  • [27] Shoja M., Shameli K., Ahmad M. and Zakaria Z. Preparation and characterization of Poly (ε-Caprolactone)/TiO 2 micro-composites, Digest Journal of Nanomaterials and Biostructures, 10 (2015) 471-477.
  • [28] Qader I. N., Pekdemir M. E., Coşkun M., Kanca M. S., Kök M. And Dağdelen F. Biocompatible PLA/PCL blends nanocomposites doped with nanographite: Physico-chemical, and thermal behaviour, Journal of Polymer Research, 29 (2022) 1-8.
  • [29] İlboğa S., Pekdemir E. and Coşkun M. Cloud Point Temperature, Thermal and Dielectrical Behaviors of Thermosensitive Block Copolymers Based N-Isopropylacrylamide, Polymer Science, Series B, 61 (2019) 32-41.
  • [30] Silverstein R. M. and Bassler G. C. Spectrometric identification of organic compounds, Journal of Chemical Education, 39 (1962) 546.
  • [31] Xing H., Lu M., Yang T., Liu H., Sun Y., Zhao X., Xu H., Yang L. and Ding P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers, Acta biomaterialia, 86 (2019) 15-40.
There are 31 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Natural Sciences
Authors

Sibel Selçuk Pekdemir 0000-0002-8643-7590

Şule İnci 0000-0002-4022-5269

Mustafa Ersin Pekdemir 0000-0002-4979-1777

Sevda Kırbağ 0000-0002-4337-8236

Project Number FF.22.11
Publication Date March 26, 2023
Submission Date August 7, 2022
Acceptance Date March 1, 2023
Published in Issue Year 2023Volume: 44 Issue: 1

Cite

APA Selçuk Pekdemir, S., İnci, Ş., Pekdemir, M. E., Kırbağ, S. (2023). Antimicrobial Properties of Biocompatible Poly (Ɛ-Caprolactone) Treated with Plant Extract. Cumhuriyet Science Journal, 44(1), 62-66. https://doi.org/10.17776/csj.1158670