Research Article
BibTex RIS Cite

3D printing for the reinterpretation of architectural heritage: Proposal of a model

Year 2024, Volume: 5 Issue: 1, 24 - 37, 15.06.2024
https://doi.org/10.58598/cuhes.1415522

Abstract

3D printing for the reinterpretation of architectural heritage stands out as one of the most efficient ways of using contemporary printing technologies in terms of architecture. The aim of the study is to present a comprehensive methodology on how to use 3D printing techniques for reinterpretation of architectural heritage. In this context, the scope of the study consists of pioneering information obtained from literature studies focusing on the details of the use of three-dimensional printing techniques in the promotion, preservation and remodeling of cultural heritage and architectural heritage components. The method of the study was determined as identifying leading themes through literature research and presenting a method proposal by grouping conceptually related themes. The unique value of the study is important in that the model to be created offers a potential to affect mass production tools, offices and local governments by incorporating contemporary architectural heritage products into a modeling process that can produce more innovative and faster solutions. The findings of the study show that the different techniques used can respond to different detail scales and different contextual challenges. Each modeling method and strategy creates different feedback mechanisms, mediating the recognition of the architectural heritage element by larger user groups or the more effective protection of the architectural heritage element. In the model presented as a result of the study, which mediates the gathering of the techniques used in different sample projects on a common working ground with a series of successive strategies, a comprehensive basis for which 3D printing solution will be used for which problem is presented and solution suggestions are offered for a case-oriented 3D printing strategy.

References

  • Goranskaja, T., Nichiporovich, A. (2023). Contemporary approaches to determining the value of architectural heritage. Proceedings of the National Academy of Sciences of Belarus, Humanitarian Series. 68. 323-332. https://doi.org/10.29235/2524-2369-2023-68-4-323-332.
  • Abd Rahim, S. A., So'od, N. F. M., Hanafiah, A. N. M., & Rahmat, S. (2023). Architectural Evolution of Heritage Masjid in Negeri Sembilan; Heritage Masjid Tanah Datar. Environment-Behaviour Proceedings Journal, 8(26), 259-266. https://doi.org/10.21834/e-bpj.v8i26.5165
  • Kantaros, A., Ganetsos, T., & Petrescu, F. I. T. (2023). Three-dimensional printing and 3D scanning: Emerging technologies exhibiting high potential in the field of cultural heritage. Applied Sciences, 13(8), 4777. https://doi.org/10.3390/app13084777
  • Millán-Millán, P. M., Chacón-Carretón, C., & Castela González, C. (2023). The process of digital fabrication and 3D printing as a tool in the study of heritage pathologies: Carcabuey Castle (Cordoba). Virtual Archaeology Review, 14(28), 81-94. https://doi.org/10.4995/var.2023.18213
  • Montusiewicz, J., Barszcz, M., & Korga, S. (2022). Preparation of 3D models of cultural heritage objects to be recognised by touch by the blind—case studies. Applied Sciences, 12(23), 11910. https://doi.org/10.3390/app122311910
  • https://www.3dnatives.com/en/reviving-heritage-blending-tradition-and-3d-printing-for-adaptive-architecture-130520232/
  • Apollonio, F. I., Fallavollita, F., & Foschi, R. (2023, March). An Experimental Methodology for the 3D Virtual Reconstruction of Never Built or Lost Architecture. In Workshop on Research and Education in Urban History in the Age of Digital Libraries, 3-18. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38871-2_1
  • Sancho Pereg, E., González Quintial, F., & Carbonel Monguilan, J. (2020). The 3D Digital Matrix and the Minaret Tower of Sta. María in Tauste: A Basis for Solid Representation of Architectural Heritage. In Graphical Heritage: Volume 1-History and Heritage, 68-80. Springer International Publishing. https://doi.org/10.1007/978-3-030-47979-4_7
  • Garfella-Rubio, J. T., Máñez-Pitarch, J., Martínez-Moya, J. A., & Gual-Ortí, J. (2020). Study on different graphic representations in architectural heritage: digital and physical modelling. In Additive Manufacturing: Breakthroughs in Research and Practice (pp. 163-205). IGI Global. https://doi.org/10.4018/978-1-5225-9624-0.ch007
  • Paparella, G., & Percoco, M. (2022). 3D Printing for Housing. Recurring Architectural Themes. In International Conference on Technological Imagination in the Green and Digital Transition, 309-319. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-29515-7_28
  • https://www.dezeen.com/2023/12/12/3d-printed-sand-wall-barry-wark/
  • https://lynxter.fr/en/blog/chronicles/using-3d-printing-for-heritage-preservation-the-example-of-notre-dame-de-paris/
  • Beal, V. E., Leal Pereira, P., & Gonçalves Junior, L. A. (2017). Simulation study to evaluate the use of fully 3D printed injection molds optimized by topology. In Procceedings of the 24th ABCM International Congress of Mechanical Engineering.
  • Almerbatı, N., & Headley, D. (2016). Heritage conservation in the new digital era: The benefits of 3D printing architecture screens in sustaining architecture and identity. In Proceedings of Sustainable Heritage: local experience global vision, the fourth international architectural conservation conference, Dubai, February 2016, Dubai Municipality, 1-15.
  • Hong, L., Xinyan, K., Sheng, L., & Yangmengliu, Z. (2023). Studying Tian Hock Keng's architectural heritage through the lens of interaction through digital design. Usability and User Experience, 110(110). 475–481. https://doi.org/10.54941/ahfe1003222
  • Montuori, R., Gilabert-Sansalvador, L., & Rosado-Torres, A. L. (2020). 3D printing for dissemination of Maya architectural heritage: The Acropolis of La Blanca (Guatemala). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 44, 481-488. https://doi.org/10.5194/isprs-archives-XLIV-M-1-2020-481-2020
  • Salcedo, J. C. (2022). 3D Modelling and Printing for the Design of the Wooden Structure of the Church of San Martín de Plasencia, Spain. In International Conference on Testing and Experimentation in Civil Engineering, 17-30. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-29191-3_2
  • Votinov, M., & Smirnova, O. (2023). Modern architectural formation and 3D printing of residential buildings. Municipal economy of cities. Series: «Engineering science and architecture,178, 55-64. https://doi.org/10.33042/2522-1809-2023-4-178-55-64
  • Živković, M., Žujović, M., & Milošević, J. (2023). Architectural 3D-Printed Structures Created Using Artificial Intelligence: A Review of Techniques and Applications. Applied Sciences, 13(19), 10671. https://doi.org/10.3390/app131910671
  • Asghar, Q., Jalil, A., & Zaman, M. (2021). Use of Innovative Tools and Techniques for Heritage Preservation in the Digital Era: Academic Research on Asaf Khan’s Tomb in Lahore. Journal of Art Architecture & Built Environment, 4(2), 59-78. https://doi.org/10.32350/jaabe.42.04
  • Corso, J., Garcia-Almirall, P., & Marco, A. (2017, October). High resolution model mesh and 3D printing of the Gaudí’s Porta del Drac. In IOP Conference Series: Materials Science and Engineering, 245(5), 052091. IOP Publishing. https://doi.org/10.1088/1757-899X/245/5/052091
  • Quintilla-Castán, M., Martínez-Aranda, S., & Agustín-Hernández, L. (2022). Digital 3D inventory for the promotion and conservation of the architectural heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 379-385. https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-379-2022
  • Babaitsev, M., Stepanova, I. (2023). 3D Modeling and 3D Printing Technologies in the Preservation and Popularization of Architectural Monuments of the Vasilevo Museum-Reserve (Tver region). Историческая информатика. 79-89. https://doi.org/10.7256/2585-7797.2023.1.40375.
  • Al-Tabeeb, A. K., & Al-Desouqi, A. A. (2023). Metaverse in Architecture: An Approach to Documenting and Exploring the Egyptian Heritage Through Metaverse. Green Building & Construction Economics, 276-295. https://doi.org/10.37256/gbce.4220232300
  • Lee, J. Y., & An, D. W. (2023). Utilization of 3D scan data:“representation” of Korean Wooden architectural heritage. Sustainability, 15(8), 6932. https://doi.org/10.3390/su15086932
  • Sutherland, N., Marsh, S., Priestnall, G., Bryan, P., & Mills, J. (2023). Infrared thermography and 3D-data fusion for architectural heritage: a scoping review. Remote Sensing, 15(9), 2422. https://doi.org/10.3390/rs15092422
  • Samadzadegan, F., Dadrass Javan, F., & Zeynalpoor Asl, M. (2023). Architectural heritage 3D modelling using unmanned aerial vehicles multi-view imaging. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 1395-1402. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1395-2023
  • Hevko, I., Potapchuk, O., Lutsyk, I., Yavorska, V., & Tkachuk, V. (2023). Techniques for creating and printing historical architectural artifacts in 3D. Ukrainian Journal of Educational Studies and Information Technology, 11(1), 14-25. https://doi.org/10.32919/uesit.2023.01.02
  • Jipa, A. (2022). Free Formwork: 3D printing for complex concrete architecture. [Doctoral dissertation, ETH Zurich].
  • Jesus, M., Guimarães, A. S., Rangel, B., & Alves, J. L. (2023). The potential of 3D printing in building pathology: rehabilitation of cultural heritage. International Journal of Building Pathology and Adaptation, 41(3), 647-674.
  • Shtepani, E., & Yunitsyna, A. (2023). Application of 3D Printing for the Parametric Models Fabrication in the Architectural Education. 1st International Conference on Frontiers in Academic Research, 155-161.
  • Chen, Y., Wu, Y., Sun, X., Ali, N., & Zhou, Q. (2023). Digital documentation and conservation of architectural heritage information: An application in modern Chinese architecture. Sustainability, 15(9), 7276. https://doi.org/10.3390/su15097276
  • Esmaeili, H., Woods, P. C., & Thwaites, H. (2014). Realisation of virtualised architectural heritage. In 2014 International Conference on Virtual Systems & Multimedia (VSMM), 94-101. https://doi.org/10.1109/VSMM.2014.7136676
  • Milošević, J., Nenadović, A., Žujović, M., Gavrilović, M., & Živković, M. (2022, June). Reworking Studio Design Education Driven by 3D Printing Technologies. In International Conference on Technological Imagination in the Green and Digital Transition, 335-344. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-29515-7_30
  • Cohen, Z. (2021). Recasting Concrete: A Case Study in Concrete 3D Printing as an Architectural Pedagogy. ACSA 109th Annual Meeting, 192-199.
  • Montusiewicz, J., Barszcz, M., & Korga, S. (2022). Procedural Analysis of the Parameters of 3D Printing Technology in the Process of Manufacturing Objects for Visually Impaired People. Advances in Science and Technology. Research Journal, 16(5), 299—311. https://doi.org/10.12913/22998624/155186
  • Montusiewicz, J., Barszcz, M., & Korga, S. (2022, September). Practical Aspects of Using 3D Technology to Disseminate Cultural Heritage Among Visually Impaired People. In International Conference on Interactive Collaborative Learning, 468-478. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-26876-2_45
  • Miloševic, J., Brajković, J., Josifovski, A., Žujović, M., & Živković, M. (2023). Reimagining Materiality: Circularity Potential of 3D Printed Architectural Elements with Recycled Clay. On Architecture–Challenges in Design: proceedings, 246-254.
  • Kamal, M. A. (2023). Analyzing the Competency of 3D Printing Technology in Architectural, Interior and Product Design. In E3S Web of Conferences, 410, 04014). EDP Sciences. https://doi.org/10.1051/e3sconf/202341004014
  • Hu, H., Cao, X., Zhang, T., Chen, Z., & Xie, J. (2022). Three-Dimensional Printing Materials for Cultural Innovation Products of Historical Buildings. Buildings, 12(5), 624. https://doi.org/10.3390/buildings12050624
  • Jauk, J., Gosch, L., Vašatko, H., Königsberger, M., Schlusche, J., & Stavric, M. (2023). Filament-Reinforced 3D Printing of Clay. Materials, 16(18), 6253. https://doi.org/10.3390/ma16186253
  • Baş, G., & Yaman, A. (2022). 3D modeling of historical artifacts with terrestrial photogrammetric method: Roman sarcophagus and tomb stele example. Cultural Heritage and Science, 3(1), 12-18.
  • Çakıcı, F. Z., & Kaçdi, R. (2023). Systematic analysis of the digital technologies used in the documentation of historical buildings. Cultural Heritage and Science, 4(2), 69-77. https://doi.org/10.58598/cuhes.1344379
Year 2024, Volume: 5 Issue: 1, 24 - 37, 15.06.2024
https://doi.org/10.58598/cuhes.1415522

Abstract

References

  • Goranskaja, T., Nichiporovich, A. (2023). Contemporary approaches to determining the value of architectural heritage. Proceedings of the National Academy of Sciences of Belarus, Humanitarian Series. 68. 323-332. https://doi.org/10.29235/2524-2369-2023-68-4-323-332.
  • Abd Rahim, S. A., So'od, N. F. M., Hanafiah, A. N. M., & Rahmat, S. (2023). Architectural Evolution of Heritage Masjid in Negeri Sembilan; Heritage Masjid Tanah Datar. Environment-Behaviour Proceedings Journal, 8(26), 259-266. https://doi.org/10.21834/e-bpj.v8i26.5165
  • Kantaros, A., Ganetsos, T., & Petrescu, F. I. T. (2023). Three-dimensional printing and 3D scanning: Emerging technologies exhibiting high potential in the field of cultural heritage. Applied Sciences, 13(8), 4777. https://doi.org/10.3390/app13084777
  • Millán-Millán, P. M., Chacón-Carretón, C., & Castela González, C. (2023). The process of digital fabrication and 3D printing as a tool in the study of heritage pathologies: Carcabuey Castle (Cordoba). Virtual Archaeology Review, 14(28), 81-94. https://doi.org/10.4995/var.2023.18213
  • Montusiewicz, J., Barszcz, M., & Korga, S. (2022). Preparation of 3D models of cultural heritage objects to be recognised by touch by the blind—case studies. Applied Sciences, 12(23), 11910. https://doi.org/10.3390/app122311910
  • https://www.3dnatives.com/en/reviving-heritage-blending-tradition-and-3d-printing-for-adaptive-architecture-130520232/
  • Apollonio, F. I., Fallavollita, F., & Foschi, R. (2023, March). An Experimental Methodology for the 3D Virtual Reconstruction of Never Built or Lost Architecture. In Workshop on Research and Education in Urban History in the Age of Digital Libraries, 3-18. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-38871-2_1
  • Sancho Pereg, E., González Quintial, F., & Carbonel Monguilan, J. (2020). The 3D Digital Matrix and the Minaret Tower of Sta. María in Tauste: A Basis for Solid Representation of Architectural Heritage. In Graphical Heritage: Volume 1-History and Heritage, 68-80. Springer International Publishing. https://doi.org/10.1007/978-3-030-47979-4_7
  • Garfella-Rubio, J. T., Máñez-Pitarch, J., Martínez-Moya, J. A., & Gual-Ortí, J. (2020). Study on different graphic representations in architectural heritage: digital and physical modelling. In Additive Manufacturing: Breakthroughs in Research and Practice (pp. 163-205). IGI Global. https://doi.org/10.4018/978-1-5225-9624-0.ch007
  • Paparella, G., & Percoco, M. (2022). 3D Printing for Housing. Recurring Architectural Themes. In International Conference on Technological Imagination in the Green and Digital Transition, 309-319. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-29515-7_28
  • https://www.dezeen.com/2023/12/12/3d-printed-sand-wall-barry-wark/
  • https://lynxter.fr/en/blog/chronicles/using-3d-printing-for-heritage-preservation-the-example-of-notre-dame-de-paris/
  • Beal, V. E., Leal Pereira, P., & Gonçalves Junior, L. A. (2017). Simulation study to evaluate the use of fully 3D printed injection molds optimized by topology. In Procceedings of the 24th ABCM International Congress of Mechanical Engineering.
  • Almerbatı, N., & Headley, D. (2016). Heritage conservation in the new digital era: The benefits of 3D printing architecture screens in sustaining architecture and identity. In Proceedings of Sustainable Heritage: local experience global vision, the fourth international architectural conservation conference, Dubai, February 2016, Dubai Municipality, 1-15.
  • Hong, L., Xinyan, K., Sheng, L., & Yangmengliu, Z. (2023). Studying Tian Hock Keng's architectural heritage through the lens of interaction through digital design. Usability and User Experience, 110(110). 475–481. https://doi.org/10.54941/ahfe1003222
  • Montuori, R., Gilabert-Sansalvador, L., & Rosado-Torres, A. L. (2020). 3D printing for dissemination of Maya architectural heritage: The Acropolis of La Blanca (Guatemala). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 44, 481-488. https://doi.org/10.5194/isprs-archives-XLIV-M-1-2020-481-2020
  • Salcedo, J. C. (2022). 3D Modelling and Printing for the Design of the Wooden Structure of the Church of San Martín de Plasencia, Spain. In International Conference on Testing and Experimentation in Civil Engineering, 17-30. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-29191-3_2
  • Votinov, M., & Smirnova, O. (2023). Modern architectural formation and 3D printing of residential buildings. Municipal economy of cities. Series: «Engineering science and architecture,178, 55-64. https://doi.org/10.33042/2522-1809-2023-4-178-55-64
  • Živković, M., Žujović, M., & Milošević, J. (2023). Architectural 3D-Printed Structures Created Using Artificial Intelligence: A Review of Techniques and Applications. Applied Sciences, 13(19), 10671. https://doi.org/10.3390/app131910671
  • Asghar, Q., Jalil, A., & Zaman, M. (2021). Use of Innovative Tools and Techniques for Heritage Preservation in the Digital Era: Academic Research on Asaf Khan’s Tomb in Lahore. Journal of Art Architecture & Built Environment, 4(2), 59-78. https://doi.org/10.32350/jaabe.42.04
  • Corso, J., Garcia-Almirall, P., & Marco, A. (2017, October). High resolution model mesh and 3D printing of the Gaudí’s Porta del Drac. In IOP Conference Series: Materials Science and Engineering, 245(5), 052091. IOP Publishing. https://doi.org/10.1088/1757-899X/245/5/052091
  • Quintilla-Castán, M., Martínez-Aranda, S., & Agustín-Hernández, L. (2022). Digital 3D inventory for the promotion and conservation of the architectural heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 379-385. https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-379-2022
  • Babaitsev, M., Stepanova, I. (2023). 3D Modeling and 3D Printing Technologies in the Preservation and Popularization of Architectural Monuments of the Vasilevo Museum-Reserve (Tver region). Историческая информатика. 79-89. https://doi.org/10.7256/2585-7797.2023.1.40375.
  • Al-Tabeeb, A. K., & Al-Desouqi, A. A. (2023). Metaverse in Architecture: An Approach to Documenting and Exploring the Egyptian Heritage Through Metaverse. Green Building & Construction Economics, 276-295. https://doi.org/10.37256/gbce.4220232300
  • Lee, J. Y., & An, D. W. (2023). Utilization of 3D scan data:“representation” of Korean Wooden architectural heritage. Sustainability, 15(8), 6932. https://doi.org/10.3390/su15086932
  • Sutherland, N., Marsh, S., Priestnall, G., Bryan, P., & Mills, J. (2023). Infrared thermography and 3D-data fusion for architectural heritage: a scoping review. Remote Sensing, 15(9), 2422. https://doi.org/10.3390/rs15092422
  • Samadzadegan, F., Dadrass Javan, F., & Zeynalpoor Asl, M. (2023). Architectural heritage 3D modelling using unmanned aerial vehicles multi-view imaging. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 1395-1402. https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-1395-2023
  • Hevko, I., Potapchuk, O., Lutsyk, I., Yavorska, V., & Tkachuk, V. (2023). Techniques for creating and printing historical architectural artifacts in 3D. Ukrainian Journal of Educational Studies and Information Technology, 11(1), 14-25. https://doi.org/10.32919/uesit.2023.01.02
  • Jipa, A. (2022). Free Formwork: 3D printing for complex concrete architecture. [Doctoral dissertation, ETH Zurich].
  • Jesus, M., Guimarães, A. S., Rangel, B., & Alves, J. L. (2023). The potential of 3D printing in building pathology: rehabilitation of cultural heritage. International Journal of Building Pathology and Adaptation, 41(3), 647-674.
  • Shtepani, E., & Yunitsyna, A. (2023). Application of 3D Printing for the Parametric Models Fabrication in the Architectural Education. 1st International Conference on Frontiers in Academic Research, 155-161.
  • Chen, Y., Wu, Y., Sun, X., Ali, N., & Zhou, Q. (2023). Digital documentation and conservation of architectural heritage information: An application in modern Chinese architecture. Sustainability, 15(9), 7276. https://doi.org/10.3390/su15097276
  • Esmaeili, H., Woods, P. C., & Thwaites, H. (2014). Realisation of virtualised architectural heritage. In 2014 International Conference on Virtual Systems & Multimedia (VSMM), 94-101. https://doi.org/10.1109/VSMM.2014.7136676
  • Milošević, J., Nenadović, A., Žujović, M., Gavrilović, M., & Živković, M. (2022, June). Reworking Studio Design Education Driven by 3D Printing Technologies. In International Conference on Technological Imagination in the Green and Digital Transition, 335-344. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-29515-7_30
  • Cohen, Z. (2021). Recasting Concrete: A Case Study in Concrete 3D Printing as an Architectural Pedagogy. ACSA 109th Annual Meeting, 192-199.
  • Montusiewicz, J., Barszcz, M., & Korga, S. (2022). Procedural Analysis of the Parameters of 3D Printing Technology in the Process of Manufacturing Objects for Visually Impaired People. Advances in Science and Technology. Research Journal, 16(5), 299—311. https://doi.org/10.12913/22998624/155186
  • Montusiewicz, J., Barszcz, M., & Korga, S. (2022, September). Practical Aspects of Using 3D Technology to Disseminate Cultural Heritage Among Visually Impaired People. In International Conference on Interactive Collaborative Learning, 468-478. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-26876-2_45
  • Miloševic, J., Brajković, J., Josifovski, A., Žujović, M., & Živković, M. (2023). Reimagining Materiality: Circularity Potential of 3D Printed Architectural Elements with Recycled Clay. On Architecture–Challenges in Design: proceedings, 246-254.
  • Kamal, M. A. (2023). Analyzing the Competency of 3D Printing Technology in Architectural, Interior and Product Design. In E3S Web of Conferences, 410, 04014). EDP Sciences. https://doi.org/10.1051/e3sconf/202341004014
  • Hu, H., Cao, X., Zhang, T., Chen, Z., & Xie, J. (2022). Three-Dimensional Printing Materials for Cultural Innovation Products of Historical Buildings. Buildings, 12(5), 624. https://doi.org/10.3390/buildings12050624
  • Jauk, J., Gosch, L., Vašatko, H., Königsberger, M., Schlusche, J., & Stavric, M. (2023). Filament-Reinforced 3D Printing of Clay. Materials, 16(18), 6253. https://doi.org/10.3390/ma16186253
  • Baş, G., & Yaman, A. (2022). 3D modeling of historical artifacts with terrestrial photogrammetric method: Roman sarcophagus and tomb stele example. Cultural Heritage and Science, 3(1), 12-18.
  • Çakıcı, F. Z., & Kaçdi, R. (2023). Systematic analysis of the digital technologies used in the documentation of historical buildings. Cultural Heritage and Science, 4(2), 69-77. https://doi.org/10.58598/cuhes.1344379
There are 43 citations in total.

Details

Primary Language English
Subjects Visual Design
Journal Section Research Articles
Authors

Gencay Çubuk 0000-0002-7908-976X

Early Pub Date March 21, 2024
Publication Date June 15, 2024
Submission Date January 5, 2024
Acceptance Date March 4, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Çubuk, G. (2024). 3D printing for the reinterpretation of architectural heritage: Proposal of a model. Cultural Heritage and Science, 5(1), 24-37. https://doi.org/10.58598/cuhes.1415522

Flag Counter

Online ISSN: 2757-9050

cc-by-sa.png Cultural Heritage and Science (CUHES) journal is licenced under Creative Commons Attribution-ShareAlike 4.0 International License.