Research Article
BibTex RIS Cite

Examining the Effect of Digital Manufacturing and Traditional Building Construction Techniques on the Building Production Process

Year 2024, Volume: 3 Issue: 1, 1 - 13, 02.07.2024
https://doi.org/10.69560/cujast.1437235

Abstract

Adapting new technologies to the construction industry is slower than in other sectors. Labor productivity has remained stable relative to other industries over the last two decades. Therefore, due to rapid population growth, more housing needs is needed. The industry needs to improve its performance against current and future demands. Building production with digital fabrication techniques has the potential to speed up the building construction process. In addition, this technique is important in that it allows production with on-site and sustainable materials. The most used digital production technique in buildings is additive manufacturing technology. This study aims to examine the advantages and disadvantages of using additive manufacturing technologies in building construction compared to traditional construction techniques. At the end of the study, it was concluded that although digital production techniques have great potential in building construction, problems still need to be solved. The need to develop standards in building construction, especially with digital production techniques, is seen as the biggest obstacle to its widespread use in building construction.

References

  • Alabbasi, M., Agkathidis, A., Chen, H. 2023. Robotic 3D printing of concrete building components for residential buildings in Saudi Arabia. Automation in Construction, 148: 104751, DOI: https://doi.org/10.1016/j.autcon.2023.104751.
  • Amornsawadwatana, S. 2005. Logistics costs evaluation in building construction Project. 5th Industrial-Academic Annual Conference on Supply Chain and Logistics Management, June 24, 2005, Bangkok, Thailand, Book of Proceedings, 77-82.
  • ASTM International Committee F42. 2023. Standard Terminology for Additive Manufacturing Technologies. https://www. astm.org/committee-f42 (Erişim Tarihi: 01.11.2023).
  • Batikha, M., Jotangia, R., Baaj, M. Y., Mousleh, I. 2022. 3D concrete printing for sustainable and economical construction: a comparative study. Automation in Construction, 134: 104087, DOI: https://doi.org/10.1016/j.autcon.2021.104087.
  • Besklubova, S., Tan, B. Q., Zhong, R. Y., Spicek, N. 2023. Logistic cost analysis for 3D printing construction projects using a multi-stage network-based approach. Automation in Construction, 151: 104863, DOI: https://doi.org/10.1016/j.autcon.2023.104863.
  • Bösiger H. 2011. The building of Isler shells. International Association for Shell and Spatial Structures (IASS), Madrid.
  • Brischetto, S., Maggiore, P., Ferro, C. G. 2017. Special issue on additive manufacturing technologies and applications. Technologies, 5(3): 58, DOI: https://doi.org/10.3390/ technologies5030058.
  • Camacho, D. D., Clayton, P., O'Brien, W. J., Seepersad, C., Juenger, M., Ferron, R., Salamone, S. 2018. Applications of additive manufacturing in the construction industry - A forward-looking review. Automation in Construction, 89, DOI: 110-119, https://doi.org/10.1016/j.autcon.2017.12.031.
  • Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., Pambaguian, L. 2014. Building components for an outpost on the lunar soil by means of a novel 3D printing Technology. Acta Astronautica, 93: 430-450, DOI: https://doi.org/10.1016/j.actaastro.2013.07.034.
  • Chen, Z. 2016. Research on the impact of 3D printing on the international supply chain. Advances in Materials Science and Engineering, 2016: 1-16, DOI: https://doi.org/ 10.1155/2016/4173873.
  • Ching, F.D.K. (2001). Çizimlerle bina yapım rehberi. Yapı Yayın. ISBN 9758599720.
  • Chua, C.K., Leong, K. F. 2014. 3D Printing and Additive Manufacturing: Principles and Applications (With Companion Media Pack) of Rapid Prototyping. World Scientific Publishing Co Inc. ISBN: 978-981-4571-40-1.
  • Craveiroa, F., Duartec, J. P., Bartoloa, H., Bartolod, P. J. 2019. Additive manufacturing as an enabling Technology for digital construction: a perspective on construction 4.0. Automation in Construction, 103: 251-267, DOI: https://doi.org/ 10.1016/j.autcon.2019.03.011.
  • Crump, S.S. 1992. Apparatus and method for creating three dimensional objects. U.S. Patent 5121329. Deckard, C.R. 1989. Method and apparatus for producing parts by selective sintering, US Patent 4863538A.
  • De Schutter, G., Lesage, K., Mechtcherine, V., Nerella, V. N., Habert, G., Agusti-Juan, I. 2018. Vision of 3d printing with concrete technical, economic and environmental potentials. Cement and Concrete Research, 112: 25-36, DOI: https://doi.org/ 10.1016/j.cemconres.2018.06.001.
  • Despeisse, M., Baumers, M., Brown, P., Charnley, F., Ford, S.J., Garmulewicz, A., Knowles, S., Minshall, T., Mortara, L., Reed-Tsochas, F. 2017. Unlocking value for a circular economy through 3D printing: a research agenda. Technological Forecasting and Social Change, 115: 75-84, DOI: https://doi.org/10.1016/j.techfore.2016.09.021.
  • Dirican, T., Akyol, A. A. 2019. Anadolu’da Kerpiç Duvar Yapımı Yöntemlerine Ait Bir Derleme Çalışması. Sanat ve Tasarım Dergisi, 23: 117-126, DOI: https://dergipark.org.tr/tr/pub/ sanatvetasarim/issue/46013/578632.
  • Dombernowsky, P., Søndergaard, A. 2012. Design, analysis and realisation of topology optimized concrete structures. Journal of the International Association for Shell and Spatial Structures, 53(4): 209-216, DOI: 10.1007/978-3-319-92294-2_36.
  • Dong, S., Yu Y. 2021. Numerical and experimental studies on capturing behaviors of the inflatable manipulator inspired by fluidic origami structures. Engineering Structures, 245: 112840, DOI: https://doi.org/10.1016/j.engstruct.2021.112840.
  • El Moussaoui, S., Lafhaj, Z., Leite, F., Fl´echard, J., Lin´eatte, B. 2021. Construction logistics centres proposing kitting service: organization analysis and cost mapping. Buildings, 11(3): 105, DOI: https://doi.org/10.3390/buildings11030105.
  • El-Sayegh, S., Romdhane, L., Manjikian, S. 2020. A critical review of 3D printing in construction: benefits, challenges, and risks. Archives of Civil and Mechanical Engineering, 20(2): 1-25, DOI: 10.1007/s43452-020-00038-w.
  • Engblom, J., Solakivi, T., Töyli, J., Ojala, L. 2012. Multiple-method analysis of logistics costs. International Journal of Production Economics, 137(1): 29-35, DOI: https://doi.org/10.1016 /j.ijpe.2012.01.007.
  • Feng, P., Meng, X., Chen, J. F., Ye, L. 2015. Mechanical properties of structures 3D printed with cementitious powders. Construction & Building Materials, 93: 486-497, DOI: https://doi.org/10.1016/j.conbuildmat.2015.05.132.
  • Feucht, T., Waldschmitt, B., Lange, J., Erven, M. 2022. Additive manufacturing of a bridge in situ. Steel Construction, 15(2): 100-110, DOI: 10.1002/stco.202100045.
  • Galjaard, S., Hofman, S., Ren, S. 2014. New opportunities to optimize structural designs in metal by using additive manufacturing. In: Advances in Architectural Geometry. Block, P., Knippers, J., Mitra, N. J., Wang, W. (eds.), Springer, Berlin, 79-93.
  • Gebhard, L., Mata-Falc´on, J., Anton, A., Dillenburger, B., Kaufmann, W. 2021. Structural behaviour of 3D printed concrete beams with various reinforcement strategies. Engineering Structures, 240: 112380, DOI: https://doi.org/10.1016/j.engstruct. 2021.112380.
  • Ghaffar, S.H., Corker, J.,Fan, M. 2018. Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Automation in Construction, 93: 1-11, DOI: https://doi.org/10.1016/j.autcon.2018.05.005.
  • Gibson, I., Rosen, D., Stucker, B. 2010. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, ISBN 978-1493921126.
  • Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., Morel, P. 2016. Large-scale 3D printing of ultra-high performance concrete-a new processing route for architects and builders. Materials & Design, 100: 102-109, DOI: https://doi.org/10.1016/j.matdes.2016.03.097.
  • Graser, K., Walzer, A. N., Hunhevicz, J., Jähne, R., Seiler, F., Wüst, R., Hall, D. M. 2023. Qualitative technology evaluation of digital fabrication with concrete: Conceptual framework and scoreboard. Automation in Construction, 154: 104964, DOI: https://doi.org/10.1016/j.autcon.2023.104964.
  • Griffin, C., Daufenbach, J., McMillin, S. 1995. Solid freeform fabrication of functional ceramic components using a laminated object manufacturing technique. International Solid Freeform Fabrication Symposium, 1995, Texas, USA, Book of Proceedings, 17-25.
  • Hoornweg, D., Bhada-Tata, P. 2012. What a waste: A global review of solid waste management. World Bank, ISBN ‎978-1464813290.
  • Hull, C.W., UVP, Inc. 1986. Apparatus for production of three-dimensional objects by stereolithography, US Patent 4575330. 46.
  • International Energy Agency (IEA) 2023. Energy Technology Perspectives 2023. www.iea.org/reports/ (Erişim Tarihi: 20.12.2023).
  • Jayathilakage, R., Rajeev, P., Sanjayan, J. 2020. Yield stress criteria to assess the buildability of 3D concrete printing. Construction and Building Materials, 240: 117989, DOI: https://doi.org/10.1016/j.conbuildmat.2019.117989. Jaquin, P. 2012.
  • History of earth building techniques. In: Woodhead Publishing Series in Energy, Hall, M.R., Lindsay, R., Krayenhoff, M. (eds.), Woodhead Publishing, Sawston, UK, 307-323, DOI: https://doi.org/10.1533/9780857096166.3.307.
  • Jiang, R., Kleer, R., Piller, F.T. 2017. Predicting the future of additive manufacturing: a Delphi study on economic and Societal implications of 3d printing to 2030. Technological Forecasting&Social Change, 117: 84-97, DOI: https://doi.org/10.1016/j.techfore.2017.01.006.
  • Jiang, J., Xu, X., Stringer, J. (2018). Support structures for additive manufacturing: a review. Journal of Manufacturing and Materials Processing, 2(4): 64, DOI: https://doi.org/10.3390/jmmp2040064. 45.
  • Joosten, S. 2015. Printing a stainless steel bridge: an exploration of structural properties of stainless steel additive manufactures for civil engineering purposes. MSc Thesis, Delft University of Technology, Delft.
  • Kazemian, A., Khoshnevis, B. 2021. Real-time extrusion quality monitoring techniques for construction 3d printing. Construction and Building Materials, 303: 124520, DOI: https://doi.org/10.1016/j.conbuildmat.2021.124520. Khajavi, S.H., Tetik, M., Mohite, A., Peltokorpi, A., Li, M., Weng, Y., Holmstrom, J. 2021. Additive manufacturing in the construction industry: the comparative competitiveness of 3d concrete printing. Applied Sciences, 11 (9): 3865, DOI: https://doi.org/10.3390/app11093865.
  • Khoshnevis, B., Dutton, R. 1998. Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials. Materials Technology, 13(2): 53-63, DOI: https://doi.org/10.1080/10667857.1998.11752766.
  • Khoshnevis, B. 2004. Automated construction by contour crafting - related robotics and information Technologies. Automation in Construction, 13 (1): 5-19, DOI: https://doi.org/10.1016/j.autcon.2003.08.012.
  • Kietzmann, J., Pitt, L., Berthon, P. 2015. Disruptions, decisions, and destinations: enter the age of 3-D printing and additive manufacturing. Business Horizons, 58(2): 209-215, DOI: https://doi.org/10.1016/j.bushor.2014.11.005.
  • Kira, B. 2023. WinSun China builds world’s first 3d printed villa and tallest 3d printed apartment building. 3d-expo.ru/en/article (Erişim Tarihi: 02.06.2023).
  • Kruger, J., Cho, S., Zeranka, S., Viljoen, C., Zijl, G. V. 2020. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse. Composites Part B: Engineering, 183: 107660, DOI: https://doi.org/10.1016/j.compositesb.2019. 107660.
  • Li, W., Lin, X., Bao, D. W., Xie, Y. M. 2022. A review of formwork systems for modern concrete construction, Structures, 38: 52-63, DOI: https://doi.org/10.1016/j.istruc.2022.01.089.
  • Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G. F., Thorpe, T. 2012. Developments in construction-scale additive manufacturing processes. Automation in Construction, 21: 262-268, DOI: https://doi.org/10.1016/j.autcon.2011.06.010.
  • Linner, T., Pan, W., Hu, R., Zhao, C., Iturralde, K., Taghavi, M., Trummer, J., Schlandt, M., Bock, T. 2020. A technology management system for the development of single-task construction robots. Construction Innovation, 20: 96-111, DOI: https://doi.org/10.1108/CI-06-2019-0053.
  • Ma, G., Wang, L. 2018. A critical review of preparation design and workability measurement of concrete material for largescale 3D printing. Frontiers of Structural and Civil Engineering, 12: 382-400, DOI: http://dx.doi.org/10.1007/s11709-017-0430-x.
  • Marzouk, M., Azab, S. 2014. Environmental and economic impact assessment of construction and demolition waste disposal using system Dynamics. Resources, Conservation and Recycling, 82: 41-49, DOI: https://doi.org/10.1016/j.resconrec.2013.10.015.
  • Mohsen, A. 2020. Design to manufacture of complex building envelopes. Springer, ISBN 978-3-658-30203-0. Munir, Q., Karki, T. 2021. Cost analysis of various factors for geopolymer 3d printing of construction products in factories and on construction cites. Recycling, 6(3): 60, DOI: https://doi.org/10.3390/recycling6030060.
  • Nerella, V. N., Krause M., Nather M. 2016. Studying printability of fresh concrete for formwork free concrete on-site 3D printing Technology (CONPrint3D). In: 3D Concrete Printing Technology. Sanjayan, J. G., Nazari, A., Nematollahi, B. (eds.), Springer. Berlin, 13-24.
  • Panda, B., Paul, S., Hui, L.J., Tay, Y.W.D., Tan, M.J. 2017. Additive manufacturing of geopolymer for sustainable built environment. Journal of Cleaner Production, 167: 281-288, DOI: https://doi.org/10.1016/j.jclepro.2017.08.165. Park, K., Min, K., Lee, B., Roh, Y. 2021. Proposal for enhancing the compressive strength of alkali-activated materials-based binder jetting 3D printed outputs. Construction and Building Materials, 303: 124377, DOI: https://doi.org/10.1016/j.conbuildmat.2021. 124377.
  • Pegna, J. 1997. Exploratory investigation of solid freeform construction. Automation in Construction, 5 (5): 427-437, DOI: https://doi.org/10.1016/S0926-5805(96)00166-5.
  • Pessoa, S., Guimaraes, A. S., Lucas, S. S., Simoes, N. 2021. 3D printing in the construction industry - a systematic review of the thermal performance in buildings. Renewable and Sustainable Energy Reviews, 141: 110794, DOI: https://doi.org/10.1016/j.rser. 2021.110794.
  • Pica, V. 2017. Traditional Earth Architecture in the Euro-Mediterranean Region. From Conservation to Knowledge for Sustainable Use. Proceedings of 5th INTBAU International Annual Event, 2004, Milano, Italy, Book of Proceedings, 1241–1252.
  • Robayo-Salazar, R., de Gutiérrez, R. M., Villaquirán-Caicedo, M. A., Arjona, S. D. 2023. 3D printing with cementitious materials: Challenges and opportunities for the construction sector. Automation in Construction, 146: 104693, DOI: https://doi.org/10.1016/j.autcon.2022.104693.
  • Rosenfield, K. 2023. Skanska and Foster + Partners Collaborate on World’s First 3D Concrete Printing Robot. www.archdaily.com/572156 (Erişim Tarihi: 06.09.2023).
  • Rudenko, A. 2023. 3d printed concrete castle is complete, 3d concrete house printer. www.designboom.com/technology/ (Erişim Tarihi: 06.09.2023).
  • Said, H., El-Rayes, K. 2011. Optimising material procurement and storage on construction sites. Journal of Construction Engineering and Management, 137(6): 421-431, DOI: http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000307.
  • Saruhan, V., Keskinateş, M., Felekoğlu, B. 2022. A comprehensive review on fresh state rheological properties of extrusion mortars designed for 3D printing applications. Construction and Building Materials, 337: 127629, DOI: https://doi.org/10.1016/j.conbuildmat.2022.127629.
  • Sümer Haydaraslan, K., Dikmen, N. 2023. Binalarda giydirme cephe açısının enerji tüketimine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1): 315-326, DOI: https://doi.org/10.17341/gazimmfd.1089497.
  • Sümer Haydaraslan, K., Yaşar, Y. 2023. Evaluation of building design strategies according to the effects of climate change by simulation-based optimisation: a case study for housing in different climate regions. International Journal of Global Warming, 30(1): 33-59, DOI: https://doi.org/10.1504/IJGW.2023.130492.
  • Sümer Haydaraslan, K. 2023. Isparta’nın çağdaş yapılarında strüktür ve malzeme. In: Isparta’nın 1950 Sonrası Çağdaş Yapıları. Şimşek, S., Gökarslan, A.B., Çelik, Ş., Çetin, S. (eds), Isparta’nın 1950 Sonrası Çağdaş Yapıları, Akademisyen Yayınevi, Ankara, 561-570, ISBN 9786253992644.
  • Tofail, S. A. M., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., Odoghue, L., Charitidis, C. 2018. Additive Manufacturing: Scientific and Technologicel Challenges, Market Uptake and Opportunities. Materials Today, 21(1): 22-37, DOI: https://doi.org/10.1016/j.mattod.2017.07.001.
  • United Nations (UN), 2023. 2030 agenda for sustainable development of the united nations general assembly. www.un.org/sustainabledevelopment (Erişim Tarihi: 12.10.2023).
  • United Nations Department of Economic and Social Affairs (UN DESA). 2022. World Population Prospects 2022: Summary of Results. https://population.un.org/wpp/Publications/ (Erişim Tarihi: 03.06.2023).
  • Vidalakis, C., Tookey, J. E. 2006. Conceptual functions of a simulation model for construction logistics. Joint International Conference on Computing and Decision Making Civil and Building Engineering, June 14, 2006, Montreal, France, Book of Proceedings, 906-915.
  • Weng, Y., Li, M., Ruan, S., Wong, T.N., Tan, M.J., Ow Yeong, K.L., Qian, S. (2020). Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. Journal of Cleaner Production, 261: 121245, DOI: https://doi.org/10.1016/j.jclepro.2020.121245.
  • Will, J., Melcher, R., Treul, C., Travitzky, N., Kneser, U., Polykandriotis, E., Horch, R., Greil, P. 2008. Porous ceramic bone scaffolds for vascularized bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 19: 2781-2790, DOI: http://dx.doi.org/10.1007/s10856-007-3346-5.
  • Wolf, A., Rosendahl, P. L., Knaack, U. 2022. Additive manufacturing of clay and ceramic building components. Automation in Construction, 133: 103956, DOI: https://doi.org/10.1016/j.autcon.2021.103956.
  • World Bank 2018. What a waste 2.0: a global snapshot of solid waste management to 2050. openknowledge.worldbank.org (Erişim Tarihi: 04.12.2023).
  • Xia, M., Sanjayan, J., 2016. Method of formulating geopolymer for 3D printing for construction applications. Materials & Design, 110: 382-390, DOI: https://doi.org/10.1016/j.matdes.2016.07.136.
  • XtreeE 2023. 3D printed wall with integrated window frame. vimeo.com/248368954 (Erişim Tarihi: 15.04.2023). Ye, J., Kyvelou, P., Gilardi, F., Lu, H., Gilbert, M., Gardner, L. 2021. An end-to-end framework for the additive manufacture of optimized tubular structures. IEEE Access, 9: 165476-165489, DOI: 10.1109/ACCESS.2021.3132797. Yergün, U. 2002. Batılılaşma dönemi mimarisinde, yapım teknolojisindeki değişim ve gelişim. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Mimarlık Anabilim Dalı, İstanbul, Türkiye.
  • Yuan, P. F., Zhan, Q., Wu, H., Beh, H. S., Zhang, L. 2022. Real-time toolpath planning and extrusion control (RTPEC) method for variable-width 3D concrete printing. Journal of Building Engineering, 46: 103716, DOI: https://doi.org/10.1016/j.jobe.2021.103716.
  • Zhang, J., Wang, J., Dong, S., Yu, X., Han, B. 2019. A review of the current progress and application of 3d printed concrete. Composites Part A, 125: 105533, DOI: https://doi.org/10.1016/j.compositesa.2019.105533.
  • Zhu, Z., Dutta, A., Dai F. 2021. Exoskeletons for manual material handling – A review and implication for construction applications. Automation in Construction, 122: 103493, DOI: https://doi.org/10.1016/j.autcon.202

Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi

Year 2024, Volume: 3 Issue: 1, 1 - 13, 02.07.2024
https://doi.org/10.69560/cujast.1437235

Abstract

Yeni teknolojilerin inşaat sektörüne adaptasyonu diğer sektörlere göre daha yavaştır. İş gücü verimliliği ise diğer sektörlere kıyasla son yirmi yılda sabit kalmıştır. Bu nedenle hızlı nüfus artışından kaynaklı barınma ihtiyacı karşılanamamaktadır. Sektörün şu anda ve gelecekte olan talepleri karşılayabilmesi için performansını artırması gerekmektedir. Dijital fabrikasyon teknikleri ile bina üretimi, bina inşa sürecini hızlandırma konusunda potansiyele sahiptir. Ayrıca yerinde ve sürdürülebilir malzemeler ile üretime imkan vermesi açısından büyük önem taşımaktadır. Bina sektöründe kullanılan dijital fabrikasyon tekniklerinden binalarda en yaygın kullanılan teknoloji eklemeli imalat teknolojileridir. Bu çalışmada binaların daha hızlı inşa edilmesinde eklemeli imalat teknolojileri kullanımının geleneksel inşa yöntemlerine göre avantajlı ve dezavantajlı olduğu durumların incelenmesi amaçlanmıştır. Çalışmada, geleneksel inşa yöntemleri ile eklemeli imalat inşa yöntemleri; sürdürülebilirlik, statik, maliyet ve üretim esnekliği parametreleri açısından karşılaştırmalı olarak incelenmiştir. Çalışmanın sonunda eklemeli imalat tekniklerinin, bina inşasında birçok potansiyele sahip olsa da henüz çözülmemiş sorunları bulunduğuna ulaşılmıştır. Özellikle tekniğin bina inşası konusunda standartlarının gelişmemiş olması, bina inşasında yaygınlaşmasının önündeki en büyük engel olarak görülmektedir.

References

  • Alabbasi, M., Agkathidis, A., Chen, H. 2023. Robotic 3D printing of concrete building components for residential buildings in Saudi Arabia. Automation in Construction, 148: 104751, DOI: https://doi.org/10.1016/j.autcon.2023.104751.
  • Amornsawadwatana, S. 2005. Logistics costs evaluation in building construction Project. 5th Industrial-Academic Annual Conference on Supply Chain and Logistics Management, June 24, 2005, Bangkok, Thailand, Book of Proceedings, 77-82.
  • ASTM International Committee F42. 2023. Standard Terminology for Additive Manufacturing Technologies. https://www. astm.org/committee-f42 (Erişim Tarihi: 01.11.2023).
  • Batikha, M., Jotangia, R., Baaj, M. Y., Mousleh, I. 2022. 3D concrete printing for sustainable and economical construction: a comparative study. Automation in Construction, 134: 104087, DOI: https://doi.org/10.1016/j.autcon.2021.104087.
  • Besklubova, S., Tan, B. Q., Zhong, R. Y., Spicek, N. 2023. Logistic cost analysis for 3D printing construction projects using a multi-stage network-based approach. Automation in Construction, 151: 104863, DOI: https://doi.org/10.1016/j.autcon.2023.104863.
  • Bösiger H. 2011. The building of Isler shells. International Association for Shell and Spatial Structures (IASS), Madrid.
  • Brischetto, S., Maggiore, P., Ferro, C. G. 2017. Special issue on additive manufacturing technologies and applications. Technologies, 5(3): 58, DOI: https://doi.org/10.3390/ technologies5030058.
  • Camacho, D. D., Clayton, P., O'Brien, W. J., Seepersad, C., Juenger, M., Ferron, R., Salamone, S. 2018. Applications of additive manufacturing in the construction industry - A forward-looking review. Automation in Construction, 89, DOI: 110-119, https://doi.org/10.1016/j.autcon.2017.12.031.
  • Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., Pambaguian, L. 2014. Building components for an outpost on the lunar soil by means of a novel 3D printing Technology. Acta Astronautica, 93: 430-450, DOI: https://doi.org/10.1016/j.actaastro.2013.07.034.
  • Chen, Z. 2016. Research on the impact of 3D printing on the international supply chain. Advances in Materials Science and Engineering, 2016: 1-16, DOI: https://doi.org/ 10.1155/2016/4173873.
  • Ching, F.D.K. (2001). Çizimlerle bina yapım rehberi. Yapı Yayın. ISBN 9758599720.
  • Chua, C.K., Leong, K. F. 2014. 3D Printing and Additive Manufacturing: Principles and Applications (With Companion Media Pack) of Rapid Prototyping. World Scientific Publishing Co Inc. ISBN: 978-981-4571-40-1.
  • Craveiroa, F., Duartec, J. P., Bartoloa, H., Bartolod, P. J. 2019. Additive manufacturing as an enabling Technology for digital construction: a perspective on construction 4.0. Automation in Construction, 103: 251-267, DOI: https://doi.org/ 10.1016/j.autcon.2019.03.011.
  • Crump, S.S. 1992. Apparatus and method for creating three dimensional objects. U.S. Patent 5121329. Deckard, C.R. 1989. Method and apparatus for producing parts by selective sintering, US Patent 4863538A.
  • De Schutter, G., Lesage, K., Mechtcherine, V., Nerella, V. N., Habert, G., Agusti-Juan, I. 2018. Vision of 3d printing with concrete technical, economic and environmental potentials. Cement and Concrete Research, 112: 25-36, DOI: https://doi.org/ 10.1016/j.cemconres.2018.06.001.
  • Despeisse, M., Baumers, M., Brown, P., Charnley, F., Ford, S.J., Garmulewicz, A., Knowles, S., Minshall, T., Mortara, L., Reed-Tsochas, F. 2017. Unlocking value for a circular economy through 3D printing: a research agenda. Technological Forecasting and Social Change, 115: 75-84, DOI: https://doi.org/10.1016/j.techfore.2016.09.021.
  • Dirican, T., Akyol, A. A. 2019. Anadolu’da Kerpiç Duvar Yapımı Yöntemlerine Ait Bir Derleme Çalışması. Sanat ve Tasarım Dergisi, 23: 117-126, DOI: https://dergipark.org.tr/tr/pub/ sanatvetasarim/issue/46013/578632.
  • Dombernowsky, P., Søndergaard, A. 2012. Design, analysis and realisation of topology optimized concrete structures. Journal of the International Association for Shell and Spatial Structures, 53(4): 209-216, DOI: 10.1007/978-3-319-92294-2_36.
  • Dong, S., Yu Y. 2021. Numerical and experimental studies on capturing behaviors of the inflatable manipulator inspired by fluidic origami structures. Engineering Structures, 245: 112840, DOI: https://doi.org/10.1016/j.engstruct.2021.112840.
  • El Moussaoui, S., Lafhaj, Z., Leite, F., Fl´echard, J., Lin´eatte, B. 2021. Construction logistics centres proposing kitting service: organization analysis and cost mapping. Buildings, 11(3): 105, DOI: https://doi.org/10.3390/buildings11030105.
  • El-Sayegh, S., Romdhane, L., Manjikian, S. 2020. A critical review of 3D printing in construction: benefits, challenges, and risks. Archives of Civil and Mechanical Engineering, 20(2): 1-25, DOI: 10.1007/s43452-020-00038-w.
  • Engblom, J., Solakivi, T., Töyli, J., Ojala, L. 2012. Multiple-method analysis of logistics costs. International Journal of Production Economics, 137(1): 29-35, DOI: https://doi.org/10.1016 /j.ijpe.2012.01.007.
  • Feng, P., Meng, X., Chen, J. F., Ye, L. 2015. Mechanical properties of structures 3D printed with cementitious powders. Construction & Building Materials, 93: 486-497, DOI: https://doi.org/10.1016/j.conbuildmat.2015.05.132.
  • Feucht, T., Waldschmitt, B., Lange, J., Erven, M. 2022. Additive manufacturing of a bridge in situ. Steel Construction, 15(2): 100-110, DOI: 10.1002/stco.202100045.
  • Galjaard, S., Hofman, S., Ren, S. 2014. New opportunities to optimize structural designs in metal by using additive manufacturing. In: Advances in Architectural Geometry. Block, P., Knippers, J., Mitra, N. J., Wang, W. (eds.), Springer, Berlin, 79-93.
  • Gebhard, L., Mata-Falc´on, J., Anton, A., Dillenburger, B., Kaufmann, W. 2021. Structural behaviour of 3D printed concrete beams with various reinforcement strategies. Engineering Structures, 240: 112380, DOI: https://doi.org/10.1016/j.engstruct. 2021.112380.
  • Ghaffar, S.H., Corker, J.,Fan, M. 2018. Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Automation in Construction, 93: 1-11, DOI: https://doi.org/10.1016/j.autcon.2018.05.005.
  • Gibson, I., Rosen, D., Stucker, B. 2010. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, ISBN 978-1493921126.
  • Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., Morel, P. 2016. Large-scale 3D printing of ultra-high performance concrete-a new processing route for architects and builders. Materials & Design, 100: 102-109, DOI: https://doi.org/10.1016/j.matdes.2016.03.097.
  • Graser, K., Walzer, A. N., Hunhevicz, J., Jähne, R., Seiler, F., Wüst, R., Hall, D. M. 2023. Qualitative technology evaluation of digital fabrication with concrete: Conceptual framework and scoreboard. Automation in Construction, 154: 104964, DOI: https://doi.org/10.1016/j.autcon.2023.104964.
  • Griffin, C., Daufenbach, J., McMillin, S. 1995. Solid freeform fabrication of functional ceramic components using a laminated object manufacturing technique. International Solid Freeform Fabrication Symposium, 1995, Texas, USA, Book of Proceedings, 17-25.
  • Hoornweg, D., Bhada-Tata, P. 2012. What a waste: A global review of solid waste management. World Bank, ISBN ‎978-1464813290.
  • Hull, C.W., UVP, Inc. 1986. Apparatus for production of three-dimensional objects by stereolithography, US Patent 4575330. 46.
  • International Energy Agency (IEA) 2023. Energy Technology Perspectives 2023. www.iea.org/reports/ (Erişim Tarihi: 20.12.2023).
  • Jayathilakage, R., Rajeev, P., Sanjayan, J. 2020. Yield stress criteria to assess the buildability of 3D concrete printing. Construction and Building Materials, 240: 117989, DOI: https://doi.org/10.1016/j.conbuildmat.2019.117989. Jaquin, P. 2012.
  • History of earth building techniques. In: Woodhead Publishing Series in Energy, Hall, M.R., Lindsay, R., Krayenhoff, M. (eds.), Woodhead Publishing, Sawston, UK, 307-323, DOI: https://doi.org/10.1533/9780857096166.3.307.
  • Jiang, R., Kleer, R., Piller, F.T. 2017. Predicting the future of additive manufacturing: a Delphi study on economic and Societal implications of 3d printing to 2030. Technological Forecasting&Social Change, 117: 84-97, DOI: https://doi.org/10.1016/j.techfore.2017.01.006.
  • Jiang, J., Xu, X., Stringer, J. (2018). Support structures for additive manufacturing: a review. Journal of Manufacturing and Materials Processing, 2(4): 64, DOI: https://doi.org/10.3390/jmmp2040064. 45.
  • Joosten, S. 2015. Printing a stainless steel bridge: an exploration of structural properties of stainless steel additive manufactures for civil engineering purposes. MSc Thesis, Delft University of Technology, Delft.
  • Kazemian, A., Khoshnevis, B. 2021. Real-time extrusion quality monitoring techniques for construction 3d printing. Construction and Building Materials, 303: 124520, DOI: https://doi.org/10.1016/j.conbuildmat.2021.124520. Khajavi, S.H., Tetik, M., Mohite, A., Peltokorpi, A., Li, M., Weng, Y., Holmstrom, J. 2021. Additive manufacturing in the construction industry: the comparative competitiveness of 3d concrete printing. Applied Sciences, 11 (9): 3865, DOI: https://doi.org/10.3390/app11093865.
  • Khoshnevis, B., Dutton, R. 1998. Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials. Materials Technology, 13(2): 53-63, DOI: https://doi.org/10.1080/10667857.1998.11752766.
  • Khoshnevis, B. 2004. Automated construction by contour crafting - related robotics and information Technologies. Automation in Construction, 13 (1): 5-19, DOI: https://doi.org/10.1016/j.autcon.2003.08.012.
  • Kietzmann, J., Pitt, L., Berthon, P. 2015. Disruptions, decisions, and destinations: enter the age of 3-D printing and additive manufacturing. Business Horizons, 58(2): 209-215, DOI: https://doi.org/10.1016/j.bushor.2014.11.005.
  • Kira, B. 2023. WinSun China builds world’s first 3d printed villa and tallest 3d printed apartment building. 3d-expo.ru/en/article (Erişim Tarihi: 02.06.2023).
  • Kruger, J., Cho, S., Zeranka, S., Viljoen, C., Zijl, G. V. 2020. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse. Composites Part B: Engineering, 183: 107660, DOI: https://doi.org/10.1016/j.compositesb.2019. 107660.
  • Li, W., Lin, X., Bao, D. W., Xie, Y. M. 2022. A review of formwork systems for modern concrete construction, Structures, 38: 52-63, DOI: https://doi.org/10.1016/j.istruc.2022.01.089.
  • Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G. F., Thorpe, T. 2012. Developments in construction-scale additive manufacturing processes. Automation in Construction, 21: 262-268, DOI: https://doi.org/10.1016/j.autcon.2011.06.010.
  • Linner, T., Pan, W., Hu, R., Zhao, C., Iturralde, K., Taghavi, M., Trummer, J., Schlandt, M., Bock, T. 2020. A technology management system for the development of single-task construction robots. Construction Innovation, 20: 96-111, DOI: https://doi.org/10.1108/CI-06-2019-0053.
  • Ma, G., Wang, L. 2018. A critical review of preparation design and workability measurement of concrete material for largescale 3D printing. Frontiers of Structural and Civil Engineering, 12: 382-400, DOI: http://dx.doi.org/10.1007/s11709-017-0430-x.
  • Marzouk, M., Azab, S. 2014. Environmental and economic impact assessment of construction and demolition waste disposal using system Dynamics. Resources, Conservation and Recycling, 82: 41-49, DOI: https://doi.org/10.1016/j.resconrec.2013.10.015.
  • Mohsen, A. 2020. Design to manufacture of complex building envelopes. Springer, ISBN 978-3-658-30203-0. Munir, Q., Karki, T. 2021. Cost analysis of various factors for geopolymer 3d printing of construction products in factories and on construction cites. Recycling, 6(3): 60, DOI: https://doi.org/10.3390/recycling6030060.
  • Nerella, V. N., Krause M., Nather M. 2016. Studying printability of fresh concrete for formwork free concrete on-site 3D printing Technology (CONPrint3D). In: 3D Concrete Printing Technology. Sanjayan, J. G., Nazari, A., Nematollahi, B. (eds.), Springer. Berlin, 13-24.
  • Panda, B., Paul, S., Hui, L.J., Tay, Y.W.D., Tan, M.J. 2017. Additive manufacturing of geopolymer for sustainable built environment. Journal of Cleaner Production, 167: 281-288, DOI: https://doi.org/10.1016/j.jclepro.2017.08.165. Park, K., Min, K., Lee, B., Roh, Y. 2021. Proposal for enhancing the compressive strength of alkali-activated materials-based binder jetting 3D printed outputs. Construction and Building Materials, 303: 124377, DOI: https://doi.org/10.1016/j.conbuildmat.2021. 124377.
  • Pegna, J. 1997. Exploratory investigation of solid freeform construction. Automation in Construction, 5 (5): 427-437, DOI: https://doi.org/10.1016/S0926-5805(96)00166-5.
  • Pessoa, S., Guimaraes, A. S., Lucas, S. S., Simoes, N. 2021. 3D printing in the construction industry - a systematic review of the thermal performance in buildings. Renewable and Sustainable Energy Reviews, 141: 110794, DOI: https://doi.org/10.1016/j.rser. 2021.110794.
  • Pica, V. 2017. Traditional Earth Architecture in the Euro-Mediterranean Region. From Conservation to Knowledge for Sustainable Use. Proceedings of 5th INTBAU International Annual Event, 2004, Milano, Italy, Book of Proceedings, 1241–1252.
  • Robayo-Salazar, R., de Gutiérrez, R. M., Villaquirán-Caicedo, M. A., Arjona, S. D. 2023. 3D printing with cementitious materials: Challenges and opportunities for the construction sector. Automation in Construction, 146: 104693, DOI: https://doi.org/10.1016/j.autcon.2022.104693.
  • Rosenfield, K. 2023. Skanska and Foster + Partners Collaborate on World’s First 3D Concrete Printing Robot. www.archdaily.com/572156 (Erişim Tarihi: 06.09.2023).
  • Rudenko, A. 2023. 3d printed concrete castle is complete, 3d concrete house printer. www.designboom.com/technology/ (Erişim Tarihi: 06.09.2023).
  • Said, H., El-Rayes, K. 2011. Optimising material procurement and storage on construction sites. Journal of Construction Engineering and Management, 137(6): 421-431, DOI: http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000307.
  • Saruhan, V., Keskinateş, M., Felekoğlu, B. 2022. A comprehensive review on fresh state rheological properties of extrusion mortars designed for 3D printing applications. Construction and Building Materials, 337: 127629, DOI: https://doi.org/10.1016/j.conbuildmat.2022.127629.
  • Sümer Haydaraslan, K., Dikmen, N. 2023. Binalarda giydirme cephe açısının enerji tüketimine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1): 315-326, DOI: https://doi.org/10.17341/gazimmfd.1089497.
  • Sümer Haydaraslan, K., Yaşar, Y. 2023. Evaluation of building design strategies according to the effects of climate change by simulation-based optimisation: a case study for housing in different climate regions. International Journal of Global Warming, 30(1): 33-59, DOI: https://doi.org/10.1504/IJGW.2023.130492.
  • Sümer Haydaraslan, K. 2023. Isparta’nın çağdaş yapılarında strüktür ve malzeme. In: Isparta’nın 1950 Sonrası Çağdaş Yapıları. Şimşek, S., Gökarslan, A.B., Çelik, Ş., Çetin, S. (eds), Isparta’nın 1950 Sonrası Çağdaş Yapıları, Akademisyen Yayınevi, Ankara, 561-570, ISBN 9786253992644.
  • Tofail, S. A. M., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., Odoghue, L., Charitidis, C. 2018. Additive Manufacturing: Scientific and Technologicel Challenges, Market Uptake and Opportunities. Materials Today, 21(1): 22-37, DOI: https://doi.org/10.1016/j.mattod.2017.07.001.
  • United Nations (UN), 2023. 2030 agenda for sustainable development of the united nations general assembly. www.un.org/sustainabledevelopment (Erişim Tarihi: 12.10.2023).
  • United Nations Department of Economic and Social Affairs (UN DESA). 2022. World Population Prospects 2022: Summary of Results. https://population.un.org/wpp/Publications/ (Erişim Tarihi: 03.06.2023).
  • Vidalakis, C., Tookey, J. E. 2006. Conceptual functions of a simulation model for construction logistics. Joint International Conference on Computing and Decision Making Civil and Building Engineering, June 14, 2006, Montreal, France, Book of Proceedings, 906-915.
  • Weng, Y., Li, M., Ruan, S., Wong, T.N., Tan, M.J., Ow Yeong, K.L., Qian, S. (2020). Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. Journal of Cleaner Production, 261: 121245, DOI: https://doi.org/10.1016/j.jclepro.2020.121245.
  • Will, J., Melcher, R., Treul, C., Travitzky, N., Kneser, U., Polykandriotis, E., Horch, R., Greil, P. 2008. Porous ceramic bone scaffolds for vascularized bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 19: 2781-2790, DOI: http://dx.doi.org/10.1007/s10856-007-3346-5.
  • Wolf, A., Rosendahl, P. L., Knaack, U. 2022. Additive manufacturing of clay and ceramic building components. Automation in Construction, 133: 103956, DOI: https://doi.org/10.1016/j.autcon.2021.103956.
  • World Bank 2018. What a waste 2.0: a global snapshot of solid waste management to 2050. openknowledge.worldbank.org (Erişim Tarihi: 04.12.2023).
  • Xia, M., Sanjayan, J., 2016. Method of formulating geopolymer for 3D printing for construction applications. Materials & Design, 110: 382-390, DOI: https://doi.org/10.1016/j.matdes.2016.07.136.
  • XtreeE 2023. 3D printed wall with integrated window frame. vimeo.com/248368954 (Erişim Tarihi: 15.04.2023). Ye, J., Kyvelou, P., Gilardi, F., Lu, H., Gilbert, M., Gardner, L. 2021. An end-to-end framework for the additive manufacture of optimized tubular structures. IEEE Access, 9: 165476-165489, DOI: 10.1109/ACCESS.2021.3132797. Yergün, U. 2002. Batılılaşma dönemi mimarisinde, yapım teknolojisindeki değişim ve gelişim. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Mimarlık Anabilim Dalı, İstanbul, Türkiye.
  • Yuan, P. F., Zhan, Q., Wu, H., Beh, H. S., Zhang, L. 2022. Real-time toolpath planning and extrusion control (RTPEC) method for variable-width 3D concrete printing. Journal of Building Engineering, 46: 103716, DOI: https://doi.org/10.1016/j.jobe.2021.103716.
  • Zhang, J., Wang, J., Dong, S., Yu, X., Han, B. 2019. A review of the current progress and application of 3d printed concrete. Composites Part A, 125: 105533, DOI: https://doi.org/10.1016/j.compositesa.2019.105533.
  • Zhu, Z., Dutta, A., Dai F. 2021. Exoskeletons for manual material handling – A review and implication for construction applications. Automation in Construction, 122: 103493, DOI: https://doi.org/10.1016/j.autcon.202
There are 77 citations in total.

Details

Primary Language Turkish
Subjects Architectural Engineering
Journal Section Research Articles
Authors

Kübra Sümer Haydaraslan 0000-0003-0663-6141

Early Pub Date July 2, 2024
Publication Date July 2, 2024
Submission Date February 14, 2024
Acceptance Date May 6, 2024
Published in Issue Year 2024 Volume: 3 Issue: 1

Cite

APA Sümer Haydaraslan, K. (2024). Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 3(1), 1-13. https://doi.org/10.69560/cujast.1437235
AMA Sümer Haydaraslan K. Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi. CUJAST. July 2024;3(1):1-13. doi:10.69560/cujast.1437235
Chicago Sümer Haydaraslan, Kübra. “Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi 3, no. 1 (July 2024): 1-13. https://doi.org/10.69560/cujast.1437235.
EndNote Sümer Haydaraslan K (July 1, 2024) Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3 1 1–13.
IEEE K. Sümer Haydaraslan, “Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi”, CUJAST, vol. 3, no. 1, pp. 1–13, 2024, doi: 10.69560/cujast.1437235.
ISNAD Sümer Haydaraslan, Kübra. “Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi”. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3/1 (July 2024), 1-13. https://doi.org/10.69560/cujast.1437235.
JAMA Sümer Haydaraslan K. Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi. CUJAST. 2024;3:1–13.
MLA Sümer Haydaraslan, Kübra. “Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 3, no. 1, 2024, pp. 1-13, doi:10.69560/cujast.1437235.
Vancouver Sümer Haydaraslan K. Bina İnşa Sürecinde Yeni İnşaat Teknolojileri Kullanımının İncelenmesi. CUJAST. 2024;3(1):1-13.