Review
BibTex RIS Cite

Electromechanically Supported Dental Implant Applications

Year 2024, Volume: 3 Issue: 1, 30 - 34, 02.07.2024
https://doi.org/10.69560/cujast.1490806

Abstract

In recent years, the use of electromechanical systems in dental implant applications has become widespread as an alternative to traditional dental surgery. Such applications include methods developed to minimize important factors that directly affect the quality of the procedure, such as the physician's personal dexterity and sensitivity. In order to overcome this disadvantage, support is received from electromechanical systems. Electromechanical systems enable physicians to perform more accurate operations thanks to their advanced sensitivity and accuracy capabilities. In particular, the process of precisely determining and preparing the place where the implant will be installed is extremely important for patient health and operation success. In this regard, the electromechanical system works together with the physician and supports the physician in the control and application of the system. This study presents a review of the scope and nature of recent available studies.

References

  • Bahrami, R., Pourhajibagher, M., Nikparto, N., & Bahador, A. (2024). Robot-assisted dental implant surgery procedure: A literature review. Journal of Dental Sciences. https://doi.org/10.1016/j.jds.2024.03.011
  • Bai, S. Z., Ren, N., Feng, Z. H., Xie, R., Dong, Y., Li, Z. W., & Zhao, Y. M. (2021). Animal experiment on the accuracy of the Autonomous Dental Implant Robotic System. Chinese Journal of Stomatology, 56(2), 170–174. https://doi.org/10.3760/cma.j.cn112144-20210107-00008
  • Bolding, S. L., & Reebye, U. N. (2022). Accuracy of haptic robotic guidance of dental implant surgery for completely edentulous arches. The Journal of Prosthetic Dentistry, 128(4), 639–647. https://doi.org/ 10.1016/j.prosdent.2020.12.048
  • Chen, J., Bai, X., Ding, Y., Shen, L., Sun, X., Cao, R., Yang, F., & Wang, L. (2023). Comparison the accuracy of a novel implant robot surgery and dynamic navigation system in dental implant surgery: an in vitro pilot study. BMC Oral Health, 23(1), 179. https://doi.org/10.1186/ s12903-023-02873-8
  • Cheng, K., Kan, T., Liu, Y., Zhu, W., Zhu, F., Wang, W., Jiang, X., & Dong, X. (2021). Accuracy of dental implant surgery with robotic position feedback and registration algorithm: An in-vitro study. Computers in Biology and Medicine, 129, 104153. https://doi.org/10.1016/j.compbiomed.2020.104153
  • Chiapasco, M., Casentini, P., & Zaniboni, M. (2009). Bone augmentation procedures in implant dentistry. The International Journal of Oral & Maxillofacial Implants, 24 Suppl, 237–259. http://www.ncbi.nlm.nih.gov/ pubmed/19885448
  • Clementini, M., Morlupi, A., Canullo, L., Agrestini, C., & Barlattani, A. (2012). Success rate of dental implants inserted in horizontal and vertical guided bone regenerated areas: a systematic review. International Journal of Oral and Maxillofacial Surgery, 41(7), 847–852. https://doi.org/10.1016/j.ijom.2012.03.016
  • Gargallo-Albiol, J., Barootchi, S., Salomó-Coll, O., & Wang, H. (2019). Advantages and disadvantages of implant navigation surgery. A systematic review. Annals of Anatomy - Anatomischer Anzeiger, 225, 1–10. https://doi.org/10.1016/j.aanat.2019.04.005
  • Haidar, Z. S. (2017). Autonomous Robotics: A fresh Era of Implant Dentistry… is a reality! Journal of Oral Research, 6(9), 230–231. https://doi.org/10.17126 /joralres.2017.072
  • Kurt Bayrakdar, S., Orhan, K., Bayrakdar, I. S., Bilgir, E., Ezhov, M., Gusarev, M., & Shumilov, E. (2021). A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Medical Imaging, 21(1), 86. https://doi.org/10.1186/s12880-021-00618-z
  • Li, C., Wang, M., Deng, H., Li, S., Fang, X., Liang, Y., Ma, X., Zhang, Y., & Li, Y. (2023). Autonomous robotic surgery for zygomatic implant placement and immediately loaded implant-supported full-arch prosthesis: a preliminary research. International Journal of Implant Dentistry, 9(1), 12. https://doi.org/10.1186/s40729-023-00474-2
  • Liu, L., Watanabe, M., & Ichikawa, T. (2023). Robotics in Dentistry: A Narrative Review. Dentistry Journal, 11(3), 62. https://doi.org/10.3390/dj11030062
  • Mureșanu, S., Almășan, O., Hedeșiu, M., Dioșan, L., Dinu, C., & Jacobs, R. (2023). Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review. Oral Radiology, 39(1), 18–40. https://doi.org/10.1007/ s11282-022-00660-9
  • Pimkhaokham, A., Jiaranuchart, S., Kaboosaya, B., Arunjaroensuk, S., Subbalekha, K., & Mattheos, N. (2022). Can computer‐assisted implant surgery improve clinical outcomes and reduce the frequency and intensity of complications in implant dentistry? A critical review. Periodontology 2000, 90(1), 197–223. https://doi.org/10.1111/prd.12458
  • Qiao, S., Wu, X., Shi, J., Tonetti, M. S., & Lai, H. (2023). Accuracy and safety of a haptic operated and machine vision controlled collaborative robot for dental implant placement: A translational study. Clinical Oral Implants Research, 34(8), 839–849. https://doi.org /10.1111/clr.14112
  • Revilla-León, M., Gómez-Polo, M., Vyas, S., Barmak, B. A., Galluci, G. O., Att, W., & Krishnamurthy, V. R. (2023). Artificial intelligence applications in implant dentistry: A systematic review. The Journal of Prosthetic Dentistry, 129(2), 293–300. https://doi.org/10.1016/ j.prosdent.2021.05.008
  • Shi, J., Liu, B., Wu, X., Liu, M., Zhang, Q., Lai, H., & Tonetti, M. S. (2024). Improved positional accuracy of dental implant placement using a haptic and machine‐vision‐controlled collaborative surgery robot: A pilot randomized controlled trial. Journal of Clinical Periodontology, 51(1), 24–32. https://doi.org/10.1111 /jcpe.13893
  • Sun, T., Lan, T., Pan, C., & Lee, H. (2018). Dental implant navigation system guide the surgery future. The Kaohsiung Journal of Medical Sciences, 34(1), 56–64. https://doi.org/10.1016/j.kjms.2017.08.011
  • Sun, X., McKenzie, F. D., Bawab, S., Li, J., Yoon, Y., & Huang, J.-K. (2011). Automated dental implantation using image-guided robotics: registration results. International Journal of Computer Assisted Radiology and Surgery, 6(5), 627–634. https://doi.org/10.1007/s11548-010-0543-3
  • Talmazov, G., Bencharit, S., Waldrop, T. C., & Ammoun, R. (2020). Accuracy of Implant Placement Position Using Nondental Open‐Source Software: An In Vitro Study. Journal of Prosthodontics, 29(7), 604–610. https://doi.org/10.1111/jopr.13208
  • Tao, B., Feng, Y., Fan, X., Zhuang, M., Chen, X., Wang, F., & Wu, Y. (2022). Accuracy of dental implant surgery using dynamic navigation and robotic systems: An in vitro study. Journal of Dentistry, 123, 104170. https://doi.org/10.1016/j.jdent.2022.104170
  • van Riet, T. C. T., Chin Jen Sem, K. T. H., Ho, J.-P. T. F., Spijker, R., Kober, J., & de Lange, J. (2021). Robot technology in dentistry, part two of a systematic review: an overview of initiatives. Dental Materials, 37(8), 1227–1236. https://doi.org/10.1016/j.dental.2021.06.002
  • Wallace, S. S., & Froum, S. J. (2003). Effect of Maxillary Sinus Augmentation on the Survival of Endosseous Dental Implants. A Systematic Review. Annals of Periodontology, 8(1), 328–343. https://doi.org/10.1902/annals.2003.8.1.328
  • Wang, W., Xu, H., Mei, D., Zhou, C., Li, X., Han, Z., Zhou, X., Li, X., & Zhao, B. (2024). Accuracy of the Yakebot dental implant robotic system versus fully guided static computer‐assisted implant surgery template in edentulous jaw implantation: A preliminary clinical study. Clinical Implant Dentistry and Related Research, 26(2), 309–316. https://doi.org/10.1111/cid.13278
  • Wu, Y., Wang, F., Fan, S., & Chow, J. K.-F. (2019). Robotics in Dental Implantology. Oral and Maxillofacial Surgery Clinics of North America, 31(3), 513–518. https://doi.org/10.1016/j.coms.2019.03.013
  • Xu, Z., Xiao, Y., Zhou, L., Lin, Y., Su, E., Chen, J., & Wu, D. (2023). Accuracy and efficiency of robotic dental implant surgery with different human-robot interactions: An in vitro study. Journal of Dentistry, 137, 104642. https://doi.org/10.1016/j.jdent.2023. 104642
  • Yan, Y., & Jia, Y. (2022). A Review on Human Comfort Factors, Measurements, and Improvements in Human–Robot Collaboration. Sensors, 22(19), 7431. https://doi.org/10.3390/s22197431
  • Yang, S., Chen, J., Li, A., Li, P., & Xu, S. (2022). Autonomous Robotic Surgery for Immediately Loaded Implant-Supported Maxillary Full-Arch Prosthesis: A Case Report. Journal of Clinical Medicine, 11(21), 6594. https://doi.org/10.3390/jcm11216594
  • Zhou, L.-P., Zhang, R.-J., Sun, Y.-W., Zhang, L., & Shen, C.-L. (2021). Accuracy of Pedicle Screw Placement and Four Other Clinical Outcomes of Robotic Guidance Technique versus Computer-Assisted Navigation in Thoracolumbar Surgery: A Meta-Analysis. World Neurosurgery, 146, e139–e150. https://doi.org/ 10.1016/j.wneu.2020.10.055

Elektromekanik Destekli Diş İmplant Uygulamaları

Year 2024, Volume: 3 Issue: 1, 30 - 34, 02.07.2024
https://doi.org/10.69560/cujast.1490806

Abstract

Son yıllarda geleneksel diş cerrahisine alternatif olarak dental implant uygulamalarında elektromekanik sistemlerin kullanımı yaygınlaşmaktadır. Bu tür uygulamalar, hekimin kişisel el becerisi ve hassasiyeti gibi işlem kalitesini doğrudan etkileyen önemli faktörleri minimize etmek için geliştirilen yöntemleri içermektedir. Bu dezavantajı giderebilmek için elektromekanik sistemlerden destek alınmaktadır. Elektromekanik sistemler gelişmiş hassasiyet ve doğruluk yetenekleri sayesinde hekime daha doğru operasyon yapma olanağı sağlar. Özellikle implantın monte edileceği yerin hassas bir şekilde belirlenmesi ve hazırlanması süreci, hasta sağlığı ve operasyon başarısı için son derece önemlidir. Bu bakımdan elektromekanik sistem hekimle birlikte çalışarak sistemin kontrolünde ve uygulamasında hekime destek olur. Bu çalışmada, yakın zamandaki mevcut çalışmaların kapsamı ve niteliği hakkında bir derleme sunulmaktadır.

References

  • Bahrami, R., Pourhajibagher, M., Nikparto, N., & Bahador, A. (2024). Robot-assisted dental implant surgery procedure: A literature review. Journal of Dental Sciences. https://doi.org/10.1016/j.jds.2024.03.011
  • Bai, S. Z., Ren, N., Feng, Z. H., Xie, R., Dong, Y., Li, Z. W., & Zhao, Y. M. (2021). Animal experiment on the accuracy of the Autonomous Dental Implant Robotic System. Chinese Journal of Stomatology, 56(2), 170–174. https://doi.org/10.3760/cma.j.cn112144-20210107-00008
  • Bolding, S. L., & Reebye, U. N. (2022). Accuracy of haptic robotic guidance of dental implant surgery for completely edentulous arches. The Journal of Prosthetic Dentistry, 128(4), 639–647. https://doi.org/ 10.1016/j.prosdent.2020.12.048
  • Chen, J., Bai, X., Ding, Y., Shen, L., Sun, X., Cao, R., Yang, F., & Wang, L. (2023). Comparison the accuracy of a novel implant robot surgery and dynamic navigation system in dental implant surgery: an in vitro pilot study. BMC Oral Health, 23(1), 179. https://doi.org/10.1186/ s12903-023-02873-8
  • Cheng, K., Kan, T., Liu, Y., Zhu, W., Zhu, F., Wang, W., Jiang, X., & Dong, X. (2021). Accuracy of dental implant surgery with robotic position feedback and registration algorithm: An in-vitro study. Computers in Biology and Medicine, 129, 104153. https://doi.org/10.1016/j.compbiomed.2020.104153
  • Chiapasco, M., Casentini, P., & Zaniboni, M. (2009). Bone augmentation procedures in implant dentistry. The International Journal of Oral & Maxillofacial Implants, 24 Suppl, 237–259. http://www.ncbi.nlm.nih.gov/ pubmed/19885448
  • Clementini, M., Morlupi, A., Canullo, L., Agrestini, C., & Barlattani, A. (2012). Success rate of dental implants inserted in horizontal and vertical guided bone regenerated areas: a systematic review. International Journal of Oral and Maxillofacial Surgery, 41(7), 847–852. https://doi.org/10.1016/j.ijom.2012.03.016
  • Gargallo-Albiol, J., Barootchi, S., Salomó-Coll, O., & Wang, H. (2019). Advantages and disadvantages of implant navigation surgery. A systematic review. Annals of Anatomy - Anatomischer Anzeiger, 225, 1–10. https://doi.org/10.1016/j.aanat.2019.04.005
  • Haidar, Z. S. (2017). Autonomous Robotics: A fresh Era of Implant Dentistry… is a reality! Journal of Oral Research, 6(9), 230–231. https://doi.org/10.17126 /joralres.2017.072
  • Kurt Bayrakdar, S., Orhan, K., Bayrakdar, I. S., Bilgir, E., Ezhov, M., Gusarev, M., & Shumilov, E. (2021). A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Medical Imaging, 21(1), 86. https://doi.org/10.1186/s12880-021-00618-z
  • Li, C., Wang, M., Deng, H., Li, S., Fang, X., Liang, Y., Ma, X., Zhang, Y., & Li, Y. (2023). Autonomous robotic surgery for zygomatic implant placement and immediately loaded implant-supported full-arch prosthesis: a preliminary research. International Journal of Implant Dentistry, 9(1), 12. https://doi.org/10.1186/s40729-023-00474-2
  • Liu, L., Watanabe, M., & Ichikawa, T. (2023). Robotics in Dentistry: A Narrative Review. Dentistry Journal, 11(3), 62. https://doi.org/10.3390/dj11030062
  • Mureșanu, S., Almășan, O., Hedeșiu, M., Dioșan, L., Dinu, C., & Jacobs, R. (2023). Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review. Oral Radiology, 39(1), 18–40. https://doi.org/10.1007/ s11282-022-00660-9
  • Pimkhaokham, A., Jiaranuchart, S., Kaboosaya, B., Arunjaroensuk, S., Subbalekha, K., & Mattheos, N. (2022). Can computer‐assisted implant surgery improve clinical outcomes and reduce the frequency and intensity of complications in implant dentistry? A critical review. Periodontology 2000, 90(1), 197–223. https://doi.org/10.1111/prd.12458
  • Qiao, S., Wu, X., Shi, J., Tonetti, M. S., & Lai, H. (2023). Accuracy and safety of a haptic operated and machine vision controlled collaborative robot for dental implant placement: A translational study. Clinical Oral Implants Research, 34(8), 839–849. https://doi.org /10.1111/clr.14112
  • Revilla-León, M., Gómez-Polo, M., Vyas, S., Barmak, B. A., Galluci, G. O., Att, W., & Krishnamurthy, V. R. (2023). Artificial intelligence applications in implant dentistry: A systematic review. The Journal of Prosthetic Dentistry, 129(2), 293–300. https://doi.org/10.1016/ j.prosdent.2021.05.008
  • Shi, J., Liu, B., Wu, X., Liu, M., Zhang, Q., Lai, H., & Tonetti, M. S. (2024). Improved positional accuracy of dental implant placement using a haptic and machine‐vision‐controlled collaborative surgery robot: A pilot randomized controlled trial. Journal of Clinical Periodontology, 51(1), 24–32. https://doi.org/10.1111 /jcpe.13893
  • Sun, T., Lan, T., Pan, C., & Lee, H. (2018). Dental implant navigation system guide the surgery future. The Kaohsiung Journal of Medical Sciences, 34(1), 56–64. https://doi.org/10.1016/j.kjms.2017.08.011
  • Sun, X., McKenzie, F. D., Bawab, S., Li, J., Yoon, Y., & Huang, J.-K. (2011). Automated dental implantation using image-guided robotics: registration results. International Journal of Computer Assisted Radiology and Surgery, 6(5), 627–634. https://doi.org/10.1007/s11548-010-0543-3
  • Talmazov, G., Bencharit, S., Waldrop, T. C., & Ammoun, R. (2020). Accuracy of Implant Placement Position Using Nondental Open‐Source Software: An In Vitro Study. Journal of Prosthodontics, 29(7), 604–610. https://doi.org/10.1111/jopr.13208
  • Tao, B., Feng, Y., Fan, X., Zhuang, M., Chen, X., Wang, F., & Wu, Y. (2022). Accuracy of dental implant surgery using dynamic navigation and robotic systems: An in vitro study. Journal of Dentistry, 123, 104170. https://doi.org/10.1016/j.jdent.2022.104170
  • van Riet, T. C. T., Chin Jen Sem, K. T. H., Ho, J.-P. T. F., Spijker, R., Kober, J., & de Lange, J. (2021). Robot technology in dentistry, part two of a systematic review: an overview of initiatives. Dental Materials, 37(8), 1227–1236. https://doi.org/10.1016/j.dental.2021.06.002
  • Wallace, S. S., & Froum, S. J. (2003). Effect of Maxillary Sinus Augmentation on the Survival of Endosseous Dental Implants. A Systematic Review. Annals of Periodontology, 8(1), 328–343. https://doi.org/10.1902/annals.2003.8.1.328
  • Wang, W., Xu, H., Mei, D., Zhou, C., Li, X., Han, Z., Zhou, X., Li, X., & Zhao, B. (2024). Accuracy of the Yakebot dental implant robotic system versus fully guided static computer‐assisted implant surgery template in edentulous jaw implantation: A preliminary clinical study. Clinical Implant Dentistry and Related Research, 26(2), 309–316. https://doi.org/10.1111/cid.13278
  • Wu, Y., Wang, F., Fan, S., & Chow, J. K.-F. (2019). Robotics in Dental Implantology. Oral and Maxillofacial Surgery Clinics of North America, 31(3), 513–518. https://doi.org/10.1016/j.coms.2019.03.013
  • Xu, Z., Xiao, Y., Zhou, L., Lin, Y., Su, E., Chen, J., & Wu, D. (2023). Accuracy and efficiency of robotic dental implant surgery with different human-robot interactions: An in vitro study. Journal of Dentistry, 137, 104642. https://doi.org/10.1016/j.jdent.2023. 104642
  • Yan, Y., & Jia, Y. (2022). A Review on Human Comfort Factors, Measurements, and Improvements in Human–Robot Collaboration. Sensors, 22(19), 7431. https://doi.org/10.3390/s22197431
  • Yang, S., Chen, J., Li, A., Li, P., & Xu, S. (2022). Autonomous Robotic Surgery for Immediately Loaded Implant-Supported Maxillary Full-Arch Prosthesis: A Case Report. Journal of Clinical Medicine, 11(21), 6594. https://doi.org/10.3390/jcm11216594
  • Zhou, L.-P., Zhang, R.-J., Sun, Y.-W., Zhang, L., & Shen, C.-L. (2021). Accuracy of Pedicle Screw Placement and Four Other Clinical Outcomes of Robotic Guidance Technique versus Computer-Assisted Navigation in Thoracolumbar Surgery: A Meta-Analysis. World Neurosurgery, 146, e139–e150. https://doi.org/ 10.1016/j.wneu.2020.10.055
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Biomechanic
Journal Section Reviews
Authors

Faruk Karaca 0000-0003-1874-9274

Engin Ünal 0000-0002-0501-3690

Early Pub Date July 2, 2024
Publication Date July 2, 2024
Submission Date May 27, 2024
Acceptance Date June 14, 2024
Published in Issue Year 2024 Volume: 3 Issue: 1

Cite

APA Karaca, F., & Ünal, E. (2024). Elektromekanik Destekli Diş İmplant Uygulamaları. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 3(1), 30-34. https://doi.org/10.69560/cujast.1490806
AMA Karaca F, Ünal E. Elektromekanik Destekli Diş İmplant Uygulamaları. CUJAST. July 2024;3(1):30-34. doi:10.69560/cujast.1490806
Chicago Karaca, Faruk, and Engin Ünal. “Elektromekanik Destekli Diş İmplant Uygulamaları”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi 3, no. 1 (July 2024): 30-34. https://doi.org/10.69560/cujast.1490806.
EndNote Karaca F, Ünal E (July 1, 2024) Elektromekanik Destekli Diş İmplant Uygulamaları. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3 1 30–34.
IEEE F. Karaca and E. Ünal, “Elektromekanik Destekli Diş İmplant Uygulamaları”, CUJAST, vol. 3, no. 1, pp. 30–34, 2024, doi: 10.69560/cujast.1490806.
ISNAD Karaca, Faruk - Ünal, Engin. “Elektromekanik Destekli Diş İmplant Uygulamaları”. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3/1 (July 2024), 30-34. https://doi.org/10.69560/cujast.1490806.
JAMA Karaca F, Ünal E. Elektromekanik Destekli Diş İmplant Uygulamaları. CUJAST. 2024;3:30–34.
MLA Karaca, Faruk and Engin Ünal. “Elektromekanik Destekli Diş İmplant Uygulamaları”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 3, no. 1, 2024, pp. 30-34, doi:10.69560/cujast.1490806.
Vancouver Karaca F, Ünal E. Elektromekanik Destekli Diş İmplant Uygulamaları. CUJAST. 2024;3(1):30-4.