Research Article
BibTex RIS Cite

Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate

Year 2024, Volume: 3 Issue: 2, 96 - 101, 26.12.2024
https://doi.org/10.69560/cujast.1580874

Abstract

In this study, the electrical characterization of a low-temperature GaN (LT-GaN) layer within an InGaN/GaN blue light-emitting LED structure grown on a sapphire substrate using the Metal Organic Chemical Vapor Deposition (MOCVD) method was examined. For high-quality growth of the GaN layer on a sapphire substrate, a two-stage GaN growth process is employed, consisting of a low-temperature GaN (LT-GaN) layer and a high-temperature GaN (HT-GaN) layer. This study specifically investigates the structural and electrical properties of the LT-GaN layer, which is the first stage of the GaN growth process. Structural characterization was performed using high-resolution X-ray diffraction (HRXRD), while electrical characterization involved Hall effect measurements and current-voltage (I-V) measurements. Based on the results from structural and electrical measurements, the optimal growth temperature for the LT-GaN layer was determined, and the effect of growth temperature on the electrical properties was demonstrated.

References

  • Aygün, E.,Zengin, M. 1998. “Atom ve Molekül Fiziği”. Ankara Üniversitesi, Ankara.
  • Colinge, J.-P.,Colinge, C.A. 2005. Yarıiletken Devre Elemanları Fiziği. Nobel Akademik Yayıncılık. (Çeviri: Tüzemen, S., Tekmen,S.), 324s., Ankara.
  • Eastman, L. F., & Mishra, U. K. 2002. The toughest transistor yet [GaN transistors]. IEEE spectrum, 39(5), 28-33. https://doi.org/10.1109/6.999791
  • Kruangam, D., Toyama, T., Hattori, Y., Deguchi, M., Okamoto, H., & Hamakawa, Y. 1987. Improvement of carrier injection efficiency in a-SiC pin LED using highly-conductive wide-gap p, n type a-SiC prepared by ECR CVD. Journal of Non-Crystalline Solids, 97, 293-296. https://doi.org/10.1016/0022-3093(87)90070-6
  • Lester, S. D., Ponce, F.A., Craford, M.G and Steigerwald, D.A. 1995. High dislocation densities in high efficiency GaNbased lightemitting diodes. Appl. Phys. Lett. 66 1249. https://doi.org/10.1063/1.113252
  • Li , Z. L., Lai, P.T., and Choi, H.W. 2009. A Reliability Study on Green InGaN–GaN Light-Emitting Diodes. IEEE Photonics Tecknology Letters 21 1429-1431. https://doi.org/10.1109/LPT.2009.2028155
  • Mott, N. F., Twose, W. D., 1961. The theory of impurity conduction, Adv. Phys., 10(38): 107-163. https://doi.org/10.1080/00018736100101271
  • Mukai, T. and Nakamura, S. 1999. Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates. Jpn. Appl. Phys. 38 5735-5739. https://doi.org/10.1143/JJAP.38.5735
  • Mukai, T., Nagahama, S., Sano, M., Yanamoto, T., Morita, D., Mitani, T., ... & Kameshima, M. 2003. Recent progress of nitride‐based light emitting devices. physica status solidi (a), 200(1), 52-57. https://doi.org/10.1002/pssa.200303326
  • Muthu, S., Schuurmans, F. J., & Pashley, M. D. 2002, October. Red, green, and blue LED based white light generation: issues and control. In Conference record of the 2002 IEEE industry applications conference. 37th IAS annual meeting (cat. No. 02CH37344) (Vol. 1, pp. 327-333). IEEE. https://doi.org/10.1109/IAS.2002.1044108
  • Nakamura, S., Senoh, M., Iwas, N. and Nagahama, S. 1995. Highpower InGaN singlequantumwellstructure blue and violet lightemitting diodes. Appl. Phys. Lett. 1868. https://doi.org/10.1063/1.114359
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kryoku, H. and Sugimoto, Y. 1996a. InGaN-Based Multi-Quantum-Well-Structure Layer Diodes. Jpn. Appl. Phys., L-74-L76. https://doi.org/10.1143/JJAP.35.L74
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H. 1996b. Continuouswave operation of InGaN multiquantumwellstructure laser diodes at 233 K. Appl. Phys. Lett. 3034. https://doi.org/10.1063/1.116830
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Matsushita, T. and Mukai, T. 2000. Blue InGaN-based laser diodes with an emission wavelength of 450 nm. Appl. Phys. Lett. 76 22. https://doi.org/10.1063/1.125643
  • Pimputkar, S., Speck, J.S., DenBaars, S.P. & Nakamura,S. 2009. Prospects for LED lighting, Nature Photonics 3, 180 – 182.
  • Salii, R. A., Mintairov, S. A., Nadtochiy, A. M., & Kalyuzhnyy, N. A. 2024. Epitaxial Heterostructures of the Active Region for Near-Infrared LEDs. Semiconductors, 58(3), 263-266. https://doi.org/10.1134/S1063782624030138 Singh, J. 2003. Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, New York, 1-494.
  • Yamaguchi, T., & Niina, T. A. T. S. U. H. I. K. O. 1981. A high brightness GaP multicolor LED. IEEE Transactions on Electron Devices, 28(5), 588-592. https://doi.org/10.1109/T-ED.1981.20387

Safir Alttaş Üzerine Büyütülen LT-GaN Tabakasının Sıcaklığa Bağlı Elektriksel Özelliklerinin Araştırılması

Year 2024, Volume: 3 Issue: 2, 96 - 101, 26.12.2024
https://doi.org/10.69560/cujast.1580874

Abstract

Bu çalışmada, Metal Organik Kimyasal Buhar Biriktirme (MOCVD) yöntemi kullanılarak safir alttaş üzerine büyütülen InGaN/GaN mavi ışık yayan LED yapısında düşük sıcaklık GaN (LT-GaN) tabakasının elektriksel karakterizasyonu incelenmiştir. Safir alttaş üzerine GaN tabakasının kaliteli büyütülebilmesi için düşük sıcaklık GaN (LT-GaN) tabakası ve yüksek sıcaklık GaN (HT-GaN) tabakası şeklinde iki aşamalı GaN büyütmesi yapılır. Bu çalışmada GaN tabakasının büyütme aşamalarından ilki olan düşük sıcaklıkta GaN (LT-GaN) tabakasının yapısal ve elektriksel özellikleri incelenmiştir. Yapısal karakterizasyon yüksek çözünürlüklü X ışını kırınımı (HRXRD) ile, elektriksel karakterizasyon ise Hall etkisi ölçümü ve akım gerilim ölçümleri ile yapılmıştır. Yapısal ve elektriksel ölçümlerden elde edilen sonuçların değerlendirilmesi ile düşük sıcaklık LT-GaN tabakası için ideal büyütme sıcaklığı belirlenmiş, büyütme sıcaklığının elektriksel özellikler üzerindeki etkisi gösterilmiştir.

References

  • Aygün, E.,Zengin, M. 1998. “Atom ve Molekül Fiziği”. Ankara Üniversitesi, Ankara.
  • Colinge, J.-P.,Colinge, C.A. 2005. Yarıiletken Devre Elemanları Fiziği. Nobel Akademik Yayıncılık. (Çeviri: Tüzemen, S., Tekmen,S.), 324s., Ankara.
  • Eastman, L. F., & Mishra, U. K. 2002. The toughest transistor yet [GaN transistors]. IEEE spectrum, 39(5), 28-33. https://doi.org/10.1109/6.999791
  • Kruangam, D., Toyama, T., Hattori, Y., Deguchi, M., Okamoto, H., & Hamakawa, Y. 1987. Improvement of carrier injection efficiency in a-SiC pin LED using highly-conductive wide-gap p, n type a-SiC prepared by ECR CVD. Journal of Non-Crystalline Solids, 97, 293-296. https://doi.org/10.1016/0022-3093(87)90070-6
  • Lester, S. D., Ponce, F.A., Craford, M.G and Steigerwald, D.A. 1995. High dislocation densities in high efficiency GaNbased lightemitting diodes. Appl. Phys. Lett. 66 1249. https://doi.org/10.1063/1.113252
  • Li , Z. L., Lai, P.T., and Choi, H.W. 2009. A Reliability Study on Green InGaN–GaN Light-Emitting Diodes. IEEE Photonics Tecknology Letters 21 1429-1431. https://doi.org/10.1109/LPT.2009.2028155
  • Mott, N. F., Twose, W. D., 1961. The theory of impurity conduction, Adv. Phys., 10(38): 107-163. https://doi.org/10.1080/00018736100101271
  • Mukai, T. and Nakamura, S. 1999. Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates. Jpn. Appl. Phys. 38 5735-5739. https://doi.org/10.1143/JJAP.38.5735
  • Mukai, T., Nagahama, S., Sano, M., Yanamoto, T., Morita, D., Mitani, T., ... & Kameshima, M. 2003. Recent progress of nitride‐based light emitting devices. physica status solidi (a), 200(1), 52-57. https://doi.org/10.1002/pssa.200303326
  • Muthu, S., Schuurmans, F. J., & Pashley, M. D. 2002, October. Red, green, and blue LED based white light generation: issues and control. In Conference record of the 2002 IEEE industry applications conference. 37th IAS annual meeting (cat. No. 02CH37344) (Vol. 1, pp. 327-333). IEEE. https://doi.org/10.1109/IAS.2002.1044108
  • Nakamura, S., Senoh, M., Iwas, N. and Nagahama, S. 1995. Highpower InGaN singlequantumwellstructure blue and violet lightemitting diodes. Appl. Phys. Lett. 1868. https://doi.org/10.1063/1.114359
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kryoku, H. and Sugimoto, Y. 1996a. InGaN-Based Multi-Quantum-Well-Structure Layer Diodes. Jpn. Appl. Phys., L-74-L76. https://doi.org/10.1143/JJAP.35.L74
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kiyoku, H. 1996b. Continuouswave operation of InGaN multiquantumwellstructure laser diodes at 233 K. Appl. Phys. Lett. 3034. https://doi.org/10.1063/1.116830
  • Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Matsushita, T. and Mukai, T. 2000. Blue InGaN-based laser diodes with an emission wavelength of 450 nm. Appl. Phys. Lett. 76 22. https://doi.org/10.1063/1.125643
  • Pimputkar, S., Speck, J.S., DenBaars, S.P. & Nakamura,S. 2009. Prospects for LED lighting, Nature Photonics 3, 180 – 182.
  • Salii, R. A., Mintairov, S. A., Nadtochiy, A. M., & Kalyuzhnyy, N. A. 2024. Epitaxial Heterostructures of the Active Region for Near-Infrared LEDs. Semiconductors, 58(3), 263-266. https://doi.org/10.1134/S1063782624030138 Singh, J. 2003. Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, New York, 1-494.
  • Yamaguchi, T., & Niina, T. A. T. S. U. H. I. K. O. 1981. A high brightness GaP multicolor LED. IEEE Transactions on Electron Devices, 28(5), 588-592. https://doi.org/10.1109/T-ED.1981.20387
There are 17 citations in total.

Details

Primary Language English
Subjects Material Physics
Journal Section Research Articles
Authors

Didem Altun 0000-0002-1964-3538

Sezai Elagöz 0000-0002-3600-8640

Early Pub Date December 23, 2024
Publication Date December 26, 2024
Submission Date November 7, 2024
Acceptance Date November 25, 2024
Published in Issue Year 2024 Volume: 3 Issue: 2

Cite

APA Altun, D., & Elagöz, S. (2024). Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 3(2), 96-101. https://doi.org/10.69560/cujast.1580874
AMA Altun D, Elagöz S. Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate. CUJAST. December 2024;3(2):96-101. doi:10.69560/cujast.1580874
Chicago Altun, Didem, and Sezai Elagöz. “Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi 3, no. 2 (December 2024): 96-101. https://doi.org/10.69560/cujast.1580874.
EndNote Altun D, Elagöz S (December 1, 2024) Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3 2 96–101.
IEEE D. Altun and S. Elagöz, “Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate”, CUJAST, vol. 3, no. 2, pp. 96–101, 2024, doi: 10.69560/cujast.1580874.
ISNAD Altun, Didem - Elagöz, Sezai. “Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate”. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3/2 (December 2024), 96-101. https://doi.org/10.69560/cujast.1580874.
JAMA Altun D, Elagöz S. Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate. CUJAST. 2024;3:96–101.
MLA Altun, Didem and Sezai Elagöz. “Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 3, no. 2, 2024, pp. 96-101, doi:10.69560/cujast.1580874.
Vancouver Altun D, Elagöz S. Investigation of The Temperature Dependent Electrical Properties of LT-GaN Layer Grown on A Sapphire Substrate. CUJAST. 2024;3(2):96-101.