Research Article
BibTex RIS Cite

Exergy Analysis of a Double-Stage Organic Rankine Cycle Using Renewable Energy

Year 2022, , 43 - 54, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1094942

Abstract

Engineering Equation Solver program (EES). For certain temperature limits in the first and second stages (S-I and S-II) R245fa + R245fa was used as refrigerant pair. This study aims to determine the effect of working temperature on system efficiency, exergy efficiency and the most suitable working temperature. The results showed that at 425K, 14.11kW exergy destruction is obtained in Pump-1 higher than other components. The smallest exergy destruction is 0.133kW is observed in Turbine-2 at 400K temperature. The
highest thermal and exergy efficiencies of the whole system were obtained at 400K temperature as 8.85% and 48.55%, respectively.

References

  • 1. Dincer, I., 6/2000. Renewable Energy and Sustainable Development: A Crucial Review. Renew Sustain Energy Rev, 4:157e75.
  • 2. Roy, J.P., Mishra, M.K., Misra., A., 2011. Performance Analysis of an Organic Rankine Cycle with Superheating Under Different Heat Source Temperature Conditions. Applied Energy, 88, 2995–3004.
  • 3. Di Pippo R., 2004. Second Law Assessment of Binary Plants Generating Power from Lowtemperature Geothermal Fluids. Geothermics, 33, 565–86.
  • 4. Wang, D., Ling, X., Peng, H., 2012. Performance Analysis of Double OrganicRankine Cycle for Discontinuous Low Temperature Waste Heat Recovery. Appl Therm Eng, 48, 63–71.
  • 5. Tchanche, B.F., Lambrinos, G., Frangoudakis, A., Papadakis, G., 2011. Low-grade Heat Conversion into Power Using Organic Rankine Cycles—A Review of Various Applications. Renew. Sustai.n Energy Rev, 15, 3963–3979.
  • 6. Wang, Q., Wang, J., Li, T., Meng, N., 2020. Techno-economic Performance of Two-stage Series Evaporation Organic Rankine Cycle with Dual-level Heat Sources. Applied Thermal Engineering, 171, 115078.
  • 7. Bertrand, F.T., Papadakis, G., Lambrinos, G., Frangoudakis, A,. 2009. Fluid Selection for a Low Temperature Solar Organic Rankine .Applied Thermal Engineering 29,2468-2476.
  • 8. Wall, G., 1998. Exergetics. Exergy Ecology Democracy, Sweden.
  • 9. Rivero, R., Anaya, A., 1997. Exergy Analysis of Industrial Processes: Energy-economyecology. Latin American Applied Research, 27, 191-205.
  • 10. Kotas, T.J., 1995. The Exergy Method of Thermal Plant Analysis, Kriger Publising Comp, USA.
  • 11. Tantekin, A., Tumen Ozdil, N.F., Segmen, M.R., 2015. Thermodynamic Analysis of an Organic Rankine Cycle (ORC) Based onmIndustrial Data. Applied Thermal Engineering, 91, 43-52.
  • 12. Çengel, A.Y., Boles, M.A., 1998.Thermodynamics, an Engineering Approach, Mc. Graw Hill, USA.
  • 13. Xu, C., Wang, Z., Li, X., Sun, F., 2011. Energy and Exergy Analysis of Solar Power Tower Plants. Appl. Therm. Eng. 31, 3904–3913.
  • 14. Lee, D.H., 2014. Organic Rankine Cyclen Power Generator. 8th Fluid Machinery Core Technology Lecture of Korea Society for Fluid Machinery, 169-179.
  • 15. Davidson, T.A., 1977. Design and Analysis of a 1 kW Rankine Power Cycle, Employing a Multi-vane Expander, for Use with a Low Temperature Solar Collector. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • 16. Chen, H., Goswami, D.Y., Stefanakos, E.K., A., 2010. Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-grade Heat. Renew Sustain Energy Rev, 14, 3059–67.
  • 17. Cengel Y.A., 2003. Heat Transfer. 2th Edition,690-694.
  • 18. Kaushik, S.C., Reddy, V.S., Tyagi., S.K., 2011. Energy and Exergy Analyses of Thermal Power Plants a Review. Renewable and Sustainable Energy Reviews 15(4), 1857–72.

Yenilenebilir Enerji Kullanan İki Aşamalı Bir Organik Rankine Çevriminin Ekserji Analizi

Year 2022, , 43 - 54, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1094942

Abstract

Bu çalışmada, Mühendislik Denklem Çözücü programı (EES) kullanılarak çift aşamalı bir Organik Rankine Çevriminin (ORC) ekserji analizi yapılmıştır. Birinci ve ikinci kademelerde (S-I ve S-II) belirli sıcaklık limitleri için R245fa + R245fa akışkan çifti olarak kullanılmıştır. Bu çalışma, çalışma sıcaklığının sistem verimliliğine, ekserji verimliliğine etkisini belirlemeyi ve en uygun çalışma sıcaklığını bulmayı amaçlamaktadır. Sonuçlar, 425K'da Pompa-1’de diğer bileşenlerden daha yüksek 14.11kW ekserji tahribatının elde edildiğini göstermiştir. En küçük ekserji tahribatı 0.133kW olup, Türbin-2’de 400K
sıcaklıkta gözlenmektedir. Tüm sistemin en yüksek termal ve ekserji verimleri sırasıyla %8,85 ve %48,55 ile 400K sıcaklıkta elde edilmiştir.

References

  • 1. Dincer, I., 6/2000. Renewable Energy and Sustainable Development: A Crucial Review. Renew Sustain Energy Rev, 4:157e75.
  • 2. Roy, J.P., Mishra, M.K., Misra., A., 2011. Performance Analysis of an Organic Rankine Cycle with Superheating Under Different Heat Source Temperature Conditions. Applied Energy, 88, 2995–3004.
  • 3. Di Pippo R., 2004. Second Law Assessment of Binary Plants Generating Power from Lowtemperature Geothermal Fluids. Geothermics, 33, 565–86.
  • 4. Wang, D., Ling, X., Peng, H., 2012. Performance Analysis of Double OrganicRankine Cycle for Discontinuous Low Temperature Waste Heat Recovery. Appl Therm Eng, 48, 63–71.
  • 5. Tchanche, B.F., Lambrinos, G., Frangoudakis, A., Papadakis, G., 2011. Low-grade Heat Conversion into Power Using Organic Rankine Cycles—A Review of Various Applications. Renew. Sustai.n Energy Rev, 15, 3963–3979.
  • 6. Wang, Q., Wang, J., Li, T., Meng, N., 2020. Techno-economic Performance of Two-stage Series Evaporation Organic Rankine Cycle with Dual-level Heat Sources. Applied Thermal Engineering, 171, 115078.
  • 7. Bertrand, F.T., Papadakis, G., Lambrinos, G., Frangoudakis, A,. 2009. Fluid Selection for a Low Temperature Solar Organic Rankine .Applied Thermal Engineering 29,2468-2476.
  • 8. Wall, G., 1998. Exergetics. Exergy Ecology Democracy, Sweden.
  • 9. Rivero, R., Anaya, A., 1997. Exergy Analysis of Industrial Processes: Energy-economyecology. Latin American Applied Research, 27, 191-205.
  • 10. Kotas, T.J., 1995. The Exergy Method of Thermal Plant Analysis, Kriger Publising Comp, USA.
  • 11. Tantekin, A., Tumen Ozdil, N.F., Segmen, M.R., 2015. Thermodynamic Analysis of an Organic Rankine Cycle (ORC) Based onmIndustrial Data. Applied Thermal Engineering, 91, 43-52.
  • 12. Çengel, A.Y., Boles, M.A., 1998.Thermodynamics, an Engineering Approach, Mc. Graw Hill, USA.
  • 13. Xu, C., Wang, Z., Li, X., Sun, F., 2011. Energy and Exergy Analysis of Solar Power Tower Plants. Appl. Therm. Eng. 31, 3904–3913.
  • 14. Lee, D.H., 2014. Organic Rankine Cyclen Power Generator. 8th Fluid Machinery Core Technology Lecture of Korea Society for Fluid Machinery, 169-179.
  • 15. Davidson, T.A., 1977. Design and Analysis of a 1 kW Rankine Power Cycle, Employing a Multi-vane Expander, for Use with a Low Temperature Solar Collector. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • 16. Chen, H., Goswami, D.Y., Stefanakos, E.K., A., 2010. Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-grade Heat. Renew Sustain Energy Rev, 14, 3059–67.
  • 17. Cengel Y.A., 2003. Heat Transfer. 2th Edition,690-694.
  • 18. Kaushik, S.C., Reddy, V.S., Tyagi., S.K., 2011. Energy and Exergy Analyses of Thermal Power Plants a Review. Renewable and Sustainable Energy Reviews 15(4), 1857–72.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ahmet Kaplan This is me 0000-0002-4094-3180

Arif Özbek This is me 0000-0003-1287-9078

Publication Date March 29, 2022
Published in Issue Year 2022

Cite

APA Kaplan, A., & Özbek, A. (2022). Exergy Analysis of a Double-Stage Organic Rankine Cycle Using Renewable Energy. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(1), 43-54. https://doi.org/10.21605/cukurovaumfd.1094942