Research Article
BibTex RIS Cite

Climbing with Robots: A Second Order Controller Design for Accurate Wheel Motion Positioning

Year 2024, Volume: 39 Issue: 1, 175 - 187, 28.03.2024
https://doi.org/10.21605/cukurovaumfd.1459428

Abstract

Climbing robots have become increasingly important for applications such as inspection, maintenance, and search and rescue in complex environments. This study presents studies on the design of a climbing robotic prototype that utilizes magnetic wheels for wall attachment and model-based control using algebraic second-order regulators for robust, accurate and fast positioning. The control approach uses the dynamics of the driving system with DC motors subject to high disturbance, including real physical constraints such as Coulomb friction, magnetic forces, and gravity. This controller uses pre-generated soft inputs in the form of high-order Bezier curves to reduce stall motor torques. Simulations of the robotic system's dynamic models were conducted using MATLAB, and experimental validation of the model-based control method was performed. The study validates the use of algebraic second-order controllers for monophasic DC motors to control the positioning of a climbing system subjected to high perturbations.

References

  • 1. Schmidt, D., Berns, K., 2013. Climbing Robots for Maintenance and Inspections of Vertical Structures. A Survey of Design Aspects and Technologies. Robotics and Autonomous Systems, 61(12), 1288-1305.
  • 2. Chang, Y., Chen, X., 2015. Design of a Scalable Wall Climbing Robot for Inter-Plane Traversing, Robotic Welding, Intelligence and Automation. Advances in Intelligent Systems and Computing, 363, 309-313.
  • 3. Shen, W., Gu, J., Shen, Y., 2005. Permanent Magnetic System Design for the Wall-Climbing Robot. Proceedings of the IEEE International Conference on Robotics and Automation, 4, 2078-2083.
  • 4. Yoshida, Y., Ma, S., 2010. Design of a Wall-Climbing Robot with Passive Suction Cups. Proceedings of the IEEE International Conference on Robotics and Biomimetics, 1513-1518.
  • 5. Zheng-Yi, X., Zhang, K., Xiao-Peng, Z. Hao, S., 2015. Design and Optimization of Magnetic Wheel for Wall Climbing Robot. Springer International Publishing.
  • 6. Peidró, A., Tavakoli, M., Marín, J.M., Reinoso, Ó., 2019. Design of Compact Switchable Magnetic Grippers for the HyReCRo Structure Climbing Robot, Mechatronics, 59, 199-212.
  • 7. Bi, Z.Q., Guan, Y.S., Chen, S.Z., 2012. A Miniature Biped Wall-Climbing Robot for Inspection of Magnetic Metal Surfaces. Proceedings of the IEEE International Conference on Robotics and Biomimetics, 324-329.
  • 8. Gallegos, G., Sattar, T., Corsar, M., James, R., Seghier, D., 2018. Towards Safe Inspection of Long Weld Lines on Ship Hulls Using an Autonomous Robot. 21st International Conference on Climbing and Walking Robots (CLAWAR 2018), Panama, 10-12 Sep.
  • 9. Huang, H., Li, D., Xue, Z., Chen, X., Liu, S., Leng, J., Wei, Y., 2017. Design and Performance Analysis of a Tracked Wall-Climbing Robot for Ship Inspection in Shipbuilding. Ocean Engineering, 131, 224-230.
  • 10. Wang, W., Wang, Y., Wang, K., Zhang, H., Zhang, J., 2008. Analysis of the Kinematics of Module Climbing Caterpillar Robots. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2008), 84-89.
  • 11. Kitai, S., Tsuru, K., Hirose, S., 2005. The Proposal of Swarm Type Wall Climbing Robot System Anchor Climber Design and Examination of the Adhering Mobile Unit. IEEE/RSJ International Conference on Intelligent Robots and Systems, 475-480.
  • 12. Yu, Z., W., Shi, Y., Xie, J.X., Yang, S.X., Dai, Z.D., 2018. Design and Analysis of a Bionic Adhesive Foot for a Gecko Robot Climbing the Ceiling. International Journal of Robotics and Automation, 33, 445-454.
  • 13. Zhang, Y., Dai, Z., Xu, Y., Qian, R., 2019. Design and Adsorption Force Optimization Analysis of TOFD-Based Weld Inspection Robot. Journal of Physics: Conference Series, 1303, The Second International Conference on Mechanical, Electric and Industrial Engineering 25-27 May 2019, Hangzhou, China.
  • 14. Milella, A., Maglietta, R., Caccia, M., Bruzzone, G., 2017. Robotic Inspection of Ship Hull Surfaces Using a Magnetic Crawler and a Monocular Camera. Sens. Rev., 37, 425-435.
  • 15. Yoshida, Y., Ma, S., 2010. Design of a Wall-climbing Robot with Passive Suction Cups. IEEE International Conference on Robotics and Biomimetics, Tianjin, 1513-1518.
  • 16. Fischer, W., Caprari, G., Siegwart, R., Moser, R., 2012. Compact Climbing Robot Rolling on Flexible Magnetic Rollers for Generator Inspection with the Rotor Still Installed. Industrial Robot: An International Journal, 39, 236-241.
  • 17. Chen, Y., Zhang, J., Liu, H., Chen, Z., 2022. A New PID Tuning Method for DC Motors Based on Fractional Order Integral Criterion. ISA Transactions, 123, 211-219.
  • 18. Kim, J., Kim, D., 2021. Development of a High-Precision Position Control System Using a PID Controller for a Monophasic DC Motor. Applied Sciences, 11(10), 4654.
  • 19. Li, X., Li, Y., Li, Z., Zhang, L., 2022. Adaptive Fuzzy Sliding Mode Control for Position Tracking of DC Motor with Lead-Lag Compensator, International Journal of Control. Automation and Systems, 20(1), 382-392.
  • 20. Kim, J., Kim, D., 2022. A Robust Position Control System Using a Lead-Lag Compensator for a Monophasic DC Motor. IEEE Transactions on Industrial Electronics, 69(1), 767-777.
  • 21. Chen, G., Yu, Z., Du, R., 2022. State Feedback Control of a DC Motor Based on Sliding Mode Observer. Journal of Control and Decision, 7(2), 220-227.
  • 22. Han, X., Wang, F., 2021. Design and Implementation of State Space Control for DC Motor Based on System Identification. Journal of Control and Decision, 6(3), 307-314.
  • 23. Yu, Z., Chen, X., Zhang, Y., Chen, W., 2021. Design and Simulation of a Motion Control System for a Quadrotor Based on Fuzzy PID Control. Aerospace Science and Technology, 120, 106082.
  • 24. Huang, Y., He, S., Zhang, W., 2021. Adaptive Sliding Mode Control for the Motion Control of Robot Manipulators with Parameter Uncertainties. International Journal of Control, Automation and Systems, 19(2), 652-661.
  • 25. Karakas, B., Arslan, E., Sekercioglu, A., 2021. Neural Network-based Robust Motion Control for a Robotic System with a 3-DOF Planar Parallel Manipulator. Robotics and Computer-Integrated Manufacturing, 69, 101992.
  • 26. Zhang, H., Yu, H., 2022. An Adaptive Fuzzy Control Approach for Motion Control of an Underwater Robot with an Unknown Payload. Ocean Engineering, 252, 108851.
  • 27. Li, Y., Li, J., Dong, W., Li, C., 2022. Robust Motion Control for a Flexible Joint Robot Using Adaptive Fuzzy Sliding Mode Control. Robotics and Computer-Integrated Manufacturing, 73, 101974.
  • 28. Sira-Ramirez, H., Agrawal, S.K., 2004. Differential Flat Systems, 17. CRC Press.
  • 29. Castillo-Berrio, C., Feliu, V., 2015. Vibration-Free Position Control for a Two-Degrees-of-Freedom Flexible-Beam Sensor. Mechatronics, 27.
  • 30. Nise, N.S., 2015. Control Systems Engineering, 7th ed. California, John Wiley Sons.
  • 31. Olsson, H., Åström, K.J., Canudas de Wit, C., Gafvert, M., Lischinsky, P., 1998. Friction Models and Friction Compensation. European Journal of Control, 4(3), 176-195.

Tırmanma Robotları: Hassas Tekerlek Konumlandırması için İkinci Dereceden Kontrolör Tasarımı

Year 2024, Volume: 39 Issue: 1, 175 - 187, 28.03.2024
https://doi.org/10.21605/cukurovaumfd.1459428

Abstract

Tırmanma robotları, zorlu ortamlarda denetim, bakım ve arama kurtarma gibi uygulamalar için giderek önemli hale gelmiştir. Bu çalışma, duvara tutunmak için manyetik tekerleklere sahip bir tırmanma robotu sisteminin tasarımı ile dayanıklı, doğru ve hızlı konumlandırma için cebirsel ikinci dereceden model tabanlı kontrolör uygulamasını ele almaktadır. Kontrol yaklaşımı oluşturulurken, Coulomb sürtünmesi, manyetik kuvvetler ve yerçekimi gibi gerçek fiziksel kısıtlamalar da dâhil olmak üzere yüksek bozuculara maruz kalan DC motorlu sürüş sisteminin dinamik bir modeli göz önüne alınmaktadır. Bu kontrol yaklaşımında, durma motor torklarını azaltmak için yüksek dereceli Bezier eğrileri şeklinde önceden oluşturulmuş yumuşak girdiler kullanılmaktadır. Robotik sistemin dinamik modellerinin benzetim çalışmaları MATLAB ortamında gerçekleştirilmiş ve model tabanlı kontrol yönteminin deneysel uygulaması yapılmıştır. Bu çalışma, yüksek bozucuların etkilediği bir tırmanma sisteminin konumlandırılmasını kontrol etmek için monofaze DC motorlar için cebirsel ikinci dereceden kontrolörlerin kullanımını ele almaktadır.

References

  • 1. Schmidt, D., Berns, K., 2013. Climbing Robots for Maintenance and Inspections of Vertical Structures. A Survey of Design Aspects and Technologies. Robotics and Autonomous Systems, 61(12), 1288-1305.
  • 2. Chang, Y., Chen, X., 2015. Design of a Scalable Wall Climbing Robot for Inter-Plane Traversing, Robotic Welding, Intelligence and Automation. Advances in Intelligent Systems and Computing, 363, 309-313.
  • 3. Shen, W., Gu, J., Shen, Y., 2005. Permanent Magnetic System Design for the Wall-Climbing Robot. Proceedings of the IEEE International Conference on Robotics and Automation, 4, 2078-2083.
  • 4. Yoshida, Y., Ma, S., 2010. Design of a Wall-Climbing Robot with Passive Suction Cups. Proceedings of the IEEE International Conference on Robotics and Biomimetics, 1513-1518.
  • 5. Zheng-Yi, X., Zhang, K., Xiao-Peng, Z. Hao, S., 2015. Design and Optimization of Magnetic Wheel for Wall Climbing Robot. Springer International Publishing.
  • 6. Peidró, A., Tavakoli, M., Marín, J.M., Reinoso, Ó., 2019. Design of Compact Switchable Magnetic Grippers for the HyReCRo Structure Climbing Robot, Mechatronics, 59, 199-212.
  • 7. Bi, Z.Q., Guan, Y.S., Chen, S.Z., 2012. A Miniature Biped Wall-Climbing Robot for Inspection of Magnetic Metal Surfaces. Proceedings of the IEEE International Conference on Robotics and Biomimetics, 324-329.
  • 8. Gallegos, G., Sattar, T., Corsar, M., James, R., Seghier, D., 2018. Towards Safe Inspection of Long Weld Lines on Ship Hulls Using an Autonomous Robot. 21st International Conference on Climbing and Walking Robots (CLAWAR 2018), Panama, 10-12 Sep.
  • 9. Huang, H., Li, D., Xue, Z., Chen, X., Liu, S., Leng, J., Wei, Y., 2017. Design and Performance Analysis of a Tracked Wall-Climbing Robot for Ship Inspection in Shipbuilding. Ocean Engineering, 131, 224-230.
  • 10. Wang, W., Wang, Y., Wang, K., Zhang, H., Zhang, J., 2008. Analysis of the Kinematics of Module Climbing Caterpillar Robots. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2008), 84-89.
  • 11. Kitai, S., Tsuru, K., Hirose, S., 2005. The Proposal of Swarm Type Wall Climbing Robot System Anchor Climber Design and Examination of the Adhering Mobile Unit. IEEE/RSJ International Conference on Intelligent Robots and Systems, 475-480.
  • 12. Yu, Z., W., Shi, Y., Xie, J.X., Yang, S.X., Dai, Z.D., 2018. Design and Analysis of a Bionic Adhesive Foot for a Gecko Robot Climbing the Ceiling. International Journal of Robotics and Automation, 33, 445-454.
  • 13. Zhang, Y., Dai, Z., Xu, Y., Qian, R., 2019. Design and Adsorption Force Optimization Analysis of TOFD-Based Weld Inspection Robot. Journal of Physics: Conference Series, 1303, The Second International Conference on Mechanical, Electric and Industrial Engineering 25-27 May 2019, Hangzhou, China.
  • 14. Milella, A., Maglietta, R., Caccia, M., Bruzzone, G., 2017. Robotic Inspection of Ship Hull Surfaces Using a Magnetic Crawler and a Monocular Camera. Sens. Rev., 37, 425-435.
  • 15. Yoshida, Y., Ma, S., 2010. Design of a Wall-climbing Robot with Passive Suction Cups. IEEE International Conference on Robotics and Biomimetics, Tianjin, 1513-1518.
  • 16. Fischer, W., Caprari, G., Siegwart, R., Moser, R., 2012. Compact Climbing Robot Rolling on Flexible Magnetic Rollers for Generator Inspection with the Rotor Still Installed. Industrial Robot: An International Journal, 39, 236-241.
  • 17. Chen, Y., Zhang, J., Liu, H., Chen, Z., 2022. A New PID Tuning Method for DC Motors Based on Fractional Order Integral Criterion. ISA Transactions, 123, 211-219.
  • 18. Kim, J., Kim, D., 2021. Development of a High-Precision Position Control System Using a PID Controller for a Monophasic DC Motor. Applied Sciences, 11(10), 4654.
  • 19. Li, X., Li, Y., Li, Z., Zhang, L., 2022. Adaptive Fuzzy Sliding Mode Control for Position Tracking of DC Motor with Lead-Lag Compensator, International Journal of Control. Automation and Systems, 20(1), 382-392.
  • 20. Kim, J., Kim, D., 2022. A Robust Position Control System Using a Lead-Lag Compensator for a Monophasic DC Motor. IEEE Transactions on Industrial Electronics, 69(1), 767-777.
  • 21. Chen, G., Yu, Z., Du, R., 2022. State Feedback Control of a DC Motor Based on Sliding Mode Observer. Journal of Control and Decision, 7(2), 220-227.
  • 22. Han, X., Wang, F., 2021. Design and Implementation of State Space Control for DC Motor Based on System Identification. Journal of Control and Decision, 6(3), 307-314.
  • 23. Yu, Z., Chen, X., Zhang, Y., Chen, W., 2021. Design and Simulation of a Motion Control System for a Quadrotor Based on Fuzzy PID Control. Aerospace Science and Technology, 120, 106082.
  • 24. Huang, Y., He, S., Zhang, W., 2021. Adaptive Sliding Mode Control for the Motion Control of Robot Manipulators with Parameter Uncertainties. International Journal of Control, Automation and Systems, 19(2), 652-661.
  • 25. Karakas, B., Arslan, E., Sekercioglu, A., 2021. Neural Network-based Robust Motion Control for a Robotic System with a 3-DOF Planar Parallel Manipulator. Robotics and Computer-Integrated Manufacturing, 69, 101992.
  • 26. Zhang, H., Yu, H., 2022. An Adaptive Fuzzy Control Approach for Motion Control of an Underwater Robot with an Unknown Payload. Ocean Engineering, 252, 108851.
  • 27. Li, Y., Li, J., Dong, W., Li, C., 2022. Robust Motion Control for a Flexible Joint Robot Using Adaptive Fuzzy Sliding Mode Control. Robotics and Computer-Integrated Manufacturing, 73, 101974.
  • 28. Sira-Ramirez, H., Agrawal, S.K., 2004. Differential Flat Systems, 17. CRC Press.
  • 29. Castillo-Berrio, C., Feliu, V., 2015. Vibration-Free Position Control for a Two-Degrees-of-Freedom Flexible-Beam Sensor. Mechatronics, 27.
  • 30. Nise, N.S., 2015. Control Systems Engineering, 7th ed. California, John Wiley Sons.
  • 31. Olsson, H., Åström, K.J., Canudas de Wit, C., Gafvert, M., Lischinsky, P., 1998. Friction Models and Friction Compensation. European Journal of Control, 4(3), 176-195.
There are 31 citations in total.

Details

Primary Language English
Subjects Control Engineering, Mechatronics and Robotics (Other)
Journal Section Articles
Authors

Claudia Fernanda Yaşar 0000-0002-8760-2359

Publication Date March 28, 2024
Published in Issue Year 2024 Volume: 39 Issue: 1

Cite

APA Yaşar, C. F. (2024). Climbing with Robots: A Second Order Controller Design for Accurate Wheel Motion Positioning. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(1), 175-187. https://doi.org/10.21605/cukurovaumfd.1459428