Research Article
BibTex RIS Cite

Dynamic Modeling of Greenhouse Micro-Climate Conditions

Year 2019, Volume: 34 Issue: 2, 279 - 290, 30.06.2019
https://doi.org/10.21605/cukurovaummfd.609522

Abstract

Determination of micro-climatic conditions in the greenhouse in our country where greenhouse is becoming more important day by day is important for the effectiveness of air-conditioning systems used to improve plant quality. By setting a dynamic mathematical model using hourly meteorology data, micro-climatic parameters (greenhouse dry-bulb temperature and relative humidity ratio, ground surface temperature) were determined by the presence and absence of heating load on the coldest days of winter, 15-18 January, in a greenhouse in the Silifke district of Mersin province. On January 15, the average temperature of the outdoor environment was 10.8ºC and the heating load of 0.796 kWh/m2day was needed to increase the temperature inside the greenhouse to 15ºC. On 18 January, the average outdoor temperature was 5.3 ºC and the heating load of 1.67 kWh/m2day was needed. Compared to ideal microclimate conditions, the time periods for heating, ventilation and humidification of the greenhouse were determined. The effect of soil surface temperature on the inside temperature has been demonstrated. Plant transpiration has been found to be very effective in the change of greenhouse humidity. 

References

  • 1. Zabeltitz, Chr. Von., 2011. Integrated Greenhouse Systems for Mild Climates: Climate Conditions, Design, Construction, Maintenance, Climate Control, Springer Heidelberg Dordrecht London New York.
  • 2. Öztürk, H. H.,2008. Sera İklimlendirme Tekniği, Hasad Yayıncılık.
  • 3. Kimball, B.A., 1973. Simulation of the Energy Balance of a Greenhouse, Agric. Meteorol., 11, 243-260.
  • 4. Fitz-Rodríguez, E., Kubota, C., Giacomelli, G.A., Tignor, M.E., Wilson, S.B., McMahon, M., 2010. Dynamic Modeling and Simulation of Greenhouse Environments Under Several Scenarios: a Web-based Application. Computers and Electronics in Agriculture, 70, 105–116.
  • 5. Reyes-Rosas A., Molina-Aiz, F.D., Valera, D.L., López A., Khamkure, S., 2017. Development of a Single Energy Balance Model for Prediction of Temperatures Inside a Naturally Ventilated Greenhouse With Polypropylene Soil Mulch. Computers and Electronics in Agriculture, 142, 9–28.
  • 6. Sethi, V.P., Sumathy, K., Lee, C., Pal, D.S., 2013. Thermal Modeling Aspects of Solar Greenhouse Micro Climate Control: A Review on Heating Technologies. Solar Energy, 96, 56-82.
  • 7. Baytorun, A. N., Zaimoğlu, Z., Akyüz, A., Üstün, S., Çaylı, A., 2018. Comparison of Greenhouse Fuel Consumption Calculated Using Different Methods with Actual Fuel Consumption. Turkish Journal of Agriculture- Food Science and Technology, 6(7), 850-857.
  • 8. Kaya, B., Baytorun, A.N., 2017. Calculation of Greenhouse Heating Energy Requirements Under Mersin (Turkey) Climatic Conditions with Different Technical Approaches. Acta Hortic. 1170, 531-538. doi: 10.17660/Acta Hortic. 2017.1170.66.
  • 9. Verlodt, H., 1990. In Protected Cultivation in The Mediterranean Climate. Greenhouses in Cyprus, FAO.
  • 10. Zhang, Q.Y., Huang, Y.J., 2002. Development of Typical Year Weather Files for Chinese Locations, ASHRAE Transactions, 108, 1063-1075.
  • 11. Yaman, K., Arslan, G., 2018. Theimpact of Hourly Solar Radiation Model on Building Energy Analysis in Different Climatic Regions of Turkey. Build Simul, 11, 483–495.
  • 12. Erbs, D.G., Klein, S.A., Duffie, J.A., 1982. Estimation of the Diffuseradiation Fraction for Hourly, Daily and Monthly-average Global Radiation, Solar Energy, 28(4), 293-302.
  • 13. McAdams, W.H., 1954. Heat Transmission, New York, McHraw-Hill.
  • 14. ASHRAE Handbook: Fundamentals, 1989. American Society of Heating, Refrigerating and Air-conditioning Engineers, Atlanta, GA.
  • 15. ASHRAE Handbook: Fundamentals, 1985. American Society of Heating, Refrigerating and Air-conditioning Engineers, Atlanta, GA.
  • 16. Fisher, D.E., Pedersen, C.O., 1997. Convective Heat Transfer in Building Energy and Thermal Load Calculations. ASHRAE Transactions, 103, Pt. 2.
  • 17. Kıyan, M., Bingöl, E., Melikoglu, M., Albostan, A., 2013. Modelling and Simulation of a Hybrid Solar Heating System for Greenhouse Applications Using Matlab/Simulink. Energy Conversion and Management, 72, 147-155.
  • 18. Singh, R.D., Tiwari, G.N., 2010. Energy Conservation in the Greenhouse System: A Steady State Analysis. Energy, 35(6), 2367-2373.
  • 19. Xing, L., 2014. Estimations of Undisturbed Ground Temperatures using Numerical and Analytical Modeling. Ph.D. Diss. Oklahoma State University, Stillwater, OK.

Sera Mikro-İklim Şartlarının Dinamik Modellenmesi

Year 2019, Volume: 34 Issue: 2, 279 - 290, 30.06.2019
https://doi.org/10.21605/cukurovaummfd.609522

Abstract

Seracılığın her gün daha çok önem kazandığı ülkemizde sera içi mikro-iklim koşullarının tespit edilmesi ürün kalitesini artırmak amacıyla kurulan iklimlendirme sistemlerinin etkinliği açısından önemlidir. Saatlik meteoroloji verilerinin kullanıldığı dinamik bir matematik model oluşturularak Mersin ili Silifke ilçesinde yer alan bir seranın kışın en soğuk günleri olan 15-18 Ocak tarihlerinde mikro-iklim değerleri (iç ortam sıcaklık ve bağıl nem, toprak sıcaklığı) ısıtma olması ve olmaması durumuna göre tespit edilmiştir. 15 Ocak günü dış ortam ortalama sıcaklığı 10,8 ºC iken sera içini 15 ºC sıcaklığa çıkarmak için 0,796 kWh/m2gün ısıtma yüküne ihtiyaç duyulmuştur. 18 Ocak günü ise dış ortam ortalama sıcaklığı 5,3 ºC iken 1,67 kWh/m2gün ısıtma yüküne ihtiyaç duyulmuştur. İdeal mikro iklim şartları ile kıyaslandığında ısıtma, havalandırma ve nemlendirme yapılması gereken zaman dilimleri ortaya konmuştur. Toprak yüzey sıcaklığının iç ortam sıcaklığına etkisinin yansıra bitki transpirasyonunun sera içi nem oranı değişiminde çok etkili olduğu tespit edilmiştir. 

References

  • 1. Zabeltitz, Chr. Von., 2011. Integrated Greenhouse Systems for Mild Climates: Climate Conditions, Design, Construction, Maintenance, Climate Control, Springer Heidelberg Dordrecht London New York.
  • 2. Öztürk, H. H.,2008. Sera İklimlendirme Tekniği, Hasad Yayıncılık.
  • 3. Kimball, B.A., 1973. Simulation of the Energy Balance of a Greenhouse, Agric. Meteorol., 11, 243-260.
  • 4. Fitz-Rodríguez, E., Kubota, C., Giacomelli, G.A., Tignor, M.E., Wilson, S.B., McMahon, M., 2010. Dynamic Modeling and Simulation of Greenhouse Environments Under Several Scenarios: a Web-based Application. Computers and Electronics in Agriculture, 70, 105–116.
  • 5. Reyes-Rosas A., Molina-Aiz, F.D., Valera, D.L., López A., Khamkure, S., 2017. Development of a Single Energy Balance Model for Prediction of Temperatures Inside a Naturally Ventilated Greenhouse With Polypropylene Soil Mulch. Computers and Electronics in Agriculture, 142, 9–28.
  • 6. Sethi, V.P., Sumathy, K., Lee, C., Pal, D.S., 2013. Thermal Modeling Aspects of Solar Greenhouse Micro Climate Control: A Review on Heating Technologies. Solar Energy, 96, 56-82.
  • 7. Baytorun, A. N., Zaimoğlu, Z., Akyüz, A., Üstün, S., Çaylı, A., 2018. Comparison of Greenhouse Fuel Consumption Calculated Using Different Methods with Actual Fuel Consumption. Turkish Journal of Agriculture- Food Science and Technology, 6(7), 850-857.
  • 8. Kaya, B., Baytorun, A.N., 2017. Calculation of Greenhouse Heating Energy Requirements Under Mersin (Turkey) Climatic Conditions with Different Technical Approaches. Acta Hortic. 1170, 531-538. doi: 10.17660/Acta Hortic. 2017.1170.66.
  • 9. Verlodt, H., 1990. In Protected Cultivation in The Mediterranean Climate. Greenhouses in Cyprus, FAO.
  • 10. Zhang, Q.Y., Huang, Y.J., 2002. Development of Typical Year Weather Files for Chinese Locations, ASHRAE Transactions, 108, 1063-1075.
  • 11. Yaman, K., Arslan, G., 2018. Theimpact of Hourly Solar Radiation Model on Building Energy Analysis in Different Climatic Regions of Turkey. Build Simul, 11, 483–495.
  • 12. Erbs, D.G., Klein, S.A., Duffie, J.A., 1982. Estimation of the Diffuseradiation Fraction for Hourly, Daily and Monthly-average Global Radiation, Solar Energy, 28(4), 293-302.
  • 13. McAdams, W.H., 1954. Heat Transmission, New York, McHraw-Hill.
  • 14. ASHRAE Handbook: Fundamentals, 1989. American Society of Heating, Refrigerating and Air-conditioning Engineers, Atlanta, GA.
  • 15. ASHRAE Handbook: Fundamentals, 1985. American Society of Heating, Refrigerating and Air-conditioning Engineers, Atlanta, GA.
  • 16. Fisher, D.E., Pedersen, C.O., 1997. Convective Heat Transfer in Building Energy and Thermal Load Calculations. ASHRAE Transactions, 103, Pt. 2.
  • 17. Kıyan, M., Bingöl, E., Melikoglu, M., Albostan, A., 2013. Modelling and Simulation of a Hybrid Solar Heating System for Greenhouse Applications Using Matlab/Simulink. Energy Conversion and Management, 72, 147-155.
  • 18. Singh, R.D., Tiwari, G.N., 2010. Energy Conservation in the Greenhouse System: A Steady State Analysis. Energy, 35(6), 2367-2373.
  • 19. Xing, L., 2014. Estimations of Undisturbed Ground Temperatures using Numerical and Analytical Modeling. Ph.D. Diss. Oklahoma State University, Stillwater, OK.
There are 19 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Gökhan Arslan

Sinan Dölek This is me

Publication Date June 30, 2019
Published in Issue Year 2019 Volume: 34 Issue: 2

Cite

APA Arslan, G., & Dölek, S. (2019). Sera Mikro-İklim Şartlarının Dinamik Modellenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(2), 279-290. https://doi.org/10.21605/cukurovaummfd.609522
AMA Arslan G, Dölek S. Sera Mikro-İklim Şartlarının Dinamik Modellenmesi. cukurovaummfd. June 2019;34(2):279-290. doi:10.21605/cukurovaummfd.609522
Chicago Arslan, Gökhan, and Sinan Dölek. “Sera Mikro-İklim Şartlarının Dinamik Modellenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34, no. 2 (June 2019): 279-90. https://doi.org/10.21605/cukurovaummfd.609522.
EndNote Arslan G, Dölek S (June 1, 2019) Sera Mikro-İklim Şartlarının Dinamik Modellenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 2 279–290.
IEEE G. Arslan and S. Dölek, “Sera Mikro-İklim Şartlarının Dinamik Modellenmesi”, cukurovaummfd, vol. 34, no. 2, pp. 279–290, 2019, doi: 10.21605/cukurovaummfd.609522.
ISNAD Arslan, Gökhan - Dölek, Sinan. “Sera Mikro-İklim Şartlarının Dinamik Modellenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34/2 (June 2019), 279-290. https://doi.org/10.21605/cukurovaummfd.609522.
JAMA Arslan G, Dölek S. Sera Mikro-İklim Şartlarının Dinamik Modellenmesi. cukurovaummfd. 2019;34:279–290.
MLA Arslan, Gökhan and Sinan Dölek. “Sera Mikro-İklim Şartlarının Dinamik Modellenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 34, no. 2, 2019, pp. 279-90, doi:10.21605/cukurovaummfd.609522.
Vancouver Arslan G, Dölek S. Sera Mikro-İklim Şartlarının Dinamik Modellenmesi. cukurovaummfd. 2019;34(2):279-90.