Research Article
BibTex RIS Cite

Dentin greftinin yeni oluşan kemikteki kemik mineral yoğunluğu üzerindeki etkileri: deneysel bir hayvan çalışması

Year 2018, , 876 - 885, 29.12.2018
https://doi.org/10.17826/cumj.376439

Abstract

maç: Bu çalışmanın amacı, kemik defektlerinde kemik grefti materyali olarak kullanılan dentinin kemik mineral yoğunluğunu değerlendirmektir. 

Gereç ve Yöntem: Çalışmada onaltı erkek Yeni Zelanda beyaz tavşanı kullanıldı. Her bir tavşanın kalvaryum kemiğinde ikişer kritik büyüklükte defekt oluşturuldu ve farklı greft materyalleri ile dolduruldu. Kemik defektleri dört gruba ayrıldı. A1 grubundaki defektler; insan dişlerinden elde edilmiş dentin ile; A2 grubundaki defektler; tavşan dişlerinden elde edilen dentin ile dolduruldu. B1 grubu sığır kemiğiyle (Bio-Oss) dolduruldu ve B2 grubundaki (kontrol) defektler boş bırakıldı. Kemik mineral yoğunluğu DEXA ile 4. ve 12. haftalarda değerlendirildi

Bulgular: 4. haftada kemik mineral yoğunluğu değerleri A1, A2 ve B1 grupları arasında istatistiksel olarak anlamlı bulunmadı. Bununla birlikte, 12. haftadaki kemik mineral yoğunluğu değerleri grup B1 için diğer gruplara göre anlamlı derecede yüksek bulundu. Histopatolojik değerlendirmeye göre; B1 grubu, A1 ve A2 gruplarına kıyasla daha iyi bir kemik iyileşmesi gösterdi. 

Sonuç: Dentin greftleri ve sığır kemik grefti kemik iyileşmesinin erken dönemindeki (4. hafta) kemik mineral yoğunluğu değerlerine göre benzer sonuç sergilemiştir.. Bununla birlikte, kemik iyileşmesinin geç döneminde (12. hafta) sığır kemiğinin kemik mineral yoğunluğu değerleri diğer gruplardan daha iyi bulundu.












References

  • 1. González-García R, Naval-Gías L, Rodríguez-Campo Fj, Muñoz-Guerra Mf, Sastre-Pérez J. Vascularized free fibular flap for the reconstruction of mandibular defects: clinical experience in 42 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 191-202.
  • 2. Takenobu T, Nagano M, Taniike N, Furutani M, Tanaka Y. Mandibular reconstruction using intraoral trifocal bone transport: report of a case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 103: 630-5.
  • 3. Precheur Hv. Bone Graft Materials, Dent Clin N Am 2007; 51: 729-46.
  • 4. Kim Wb, Kim Sg, Lim Sc. Effect of Tisseel on bone healing with particulate dentin and plaster of Paris mixture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 34-40
  • 5. Ozer K, Chung Kc. The use of bone grafts and substitutes in the treatment of distal radius fractures. Hand Clin 2012; 28: 217-23.
  • 6. Towbridge H, Kim S, Suda H. Structure and Functions of the Dentin and Pulp Complex. Cohen S, Burns RC, editors. Pathways of the Pulp. 8th Ed., St. Louis; Mosby. 2002; 411–419
  • 7. Murata M, Pignatello R (editor). Autograft of Dentin Materials for Bone Regeneration. Advances in Biomaterials Science and Biomedical Applications. London: InTech, Chapters published; 2013; p 291-403
  • 8. Kim Sg, Kim Hk, Lim Sc. Combined implantation of particulate dentine, plaster of Paris, and a bone xenograft (Bio-Oss) for bone regeneration in rats. J Craniomaxillofac Surg 2001; 29: 282-288.
  • 9. Gomes Mf, Dos Anjos Mj, Nogueira To, Guimaraes Sa. Histologic evaluation of the osteoinductive property of autogenous demineralized dentin matrix on surgical bone defects in rabbit skulls using human amniotic membrane for guided bone regeneration. Int J OralMaxillofac Implants 2001; 16: 563–71.
  • 10. Gomes Mf, Dos Anjos Mj, Nogueira Tde O, Catanzaro Guimaraes Sa. Autogenous demineralized dentin matrix for tissue engineering applications: radiographic and histomorphometric studies. Int JOral Maxillofac Implants 2002; 17: 488–97.
  • 11. Kim Sg, Yeo Hh, Kim Yk. Grafting of large defect of the jaws with a particulate dentin-plaster of Paris combination. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999; 88: 22-25.
  • 12. Kim Sg, Kim Hk, Lim Sc. Combined implantation of particulate dentine, plaster of Paris, and a bone xenograft (Bio-Oss) for bone regeneration in rats. J Craniomaxillofac Surg 2001; 29: 282-288.
  • 13. Kim Yk, Kim Sg, Byeon Jh. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 496-503.
  • 14. Kim YK, Um IW, Cho W, Murata M, Jun S, Lee J. Applications of Moldable Autogenous Tooth Bone Graft (M-AutoBT) Mixed with Hydroxypropylmethyl Cellulose for Sinus Lifting. Journal of Hard Tissue Biology 2015; 24:391-3
  • 15. Homolka P, Beer A, Birkfellner W, Nowotny R, Gahleitner A, Tschabitscher M, Bergmann H. Bone mineral density measurement with dental quantitative CT prior to dental implant placement in cadaver mandibles: pilot study. Radiology. 2002; 224(1):247-52.
  • 16. Marquezan M, Osório A, Sant'Anna E, Souza MM, Maia L. Does bone mineral density influence the primary stability of dental implants? A systematic review. Clin Oral Implants Res. 2012; 23(7):767-74
  • 17. Moharamzadeh K, Freeman C, Black K. Processed bovine dentine as a bone substitute. Br J Oral Maxillofac Surg 2007; 46: 110-113.
  • 18. Dodde R 2nd, Yavuzer R, Bier Uc, Alkadri A, Jackson It. Spontaneous bone healing in the rabbit. J Craniofac Surg 2000; 11: 346-349. 19. Findikcioglu K, Findikcioglu F, Yavuzer R, Elmas C, Atabay K. Effect of platelet-rich plasma and fibrin glue on healing of critical-size calvarial bone defects. J Craniofac Surg 2009; 20: 34-40.
  • 20. Jensen Ss, Broggini N, Hjørting-Hansen E, Schenk R, Buser D. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 2006; 17: 237-243.
  • 21. Misch Ce. Key to Bone Grafting and Bone Grafting Materials, Misch CE, Contemporary Implant Dentistry, 3rd. ed. Mosby, St. Louis 2008; 855-863.
  • 22. Cole As, Calcified Tissues; Bone, Dentin and Cementum, Cole AS, Biochemistry and Oral Biology, 2nd ed. Butterworth and Co. Ltd, Bristol 1988; 435-441.
  • 23. Catanzaro Sa, Catanzaro Bpn, Guimarães Rb, Garcia Na. Osteogenic potential of autogenic demineralized dentin implanted in bony defects in dogs. Int J Oral Maxillofac Surg 1986; 15: 160–169.
  • 24. Cacchioli A, Spaggiari B, Ravanetti F, Martini Fm, Borghetti P, Gabbi C. The critical sized bone defect: morphological study of bone healing. Annali della Facolta di Medicina Veterinaria Universita delgi Studi di Parma 2006; 16: 97-110.
  • 25. Schmitz Jp, Hollinger Jo. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986; 205: 299-308.
  • 26. Hollinger Jo, Kleinschmidt Jc. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1990; 1: 60-68.
  • 27. Kim Sy, Kim Sg, Lim Sc, Bae Cs. Effects on Bone Formation in Ovariectomized Rats After Implantation of Tooth Ash and Plaster of Paris Mixture. J Oral Maxillofac Surg 2004; 62: 852-857.
  • 28. Yagihashi K, Miyazawa K, Togari K, Goto S. Demineralized dentin matrix acts as a scaffold for repair of articular cartilage defects. Calcif Tissue Int 2009; 84: 210-220.
  • 29. Loty B, Courpied Jp, Tomeno B, Postel M, Forest M, Abelanet R. Bone allografts sterilised by irradiation. Biological properties, procurement and results of 150 massive allografts. Int Orthop 1990; 14: 237-42.
  • 30. Moreau Mf, Gallois Y, Baslé Mf, Chappard D. Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials 2000; 21: 369-76.
  • 31. Zhang Y, Homsi D, Gates K, Oakes K, Sutherland V, Wolfinbarger L Jr. A comprehensive study of physical parameters, biomechanical properties and statistical correlations of iliac crest bone wedges used in spinal fusion surgery. IV. Efect of gamma irradiation on mechanical and material properties. Spine 1994; 19: 304-308.
  • 32. Pruss A, Kao M, Gohs U, Koscielny J, Versen R, Pauli G. Effect of gamma irradiation on human cortical bone transplants contaminated with enveloped and non-enveloped viruses. Biologicals 2002; 30: 125–133.
  • 33. Kim Yk, Kim Sg, Yun Py. Autogenous teeth used for bone grafting: a comparasion with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2014; 117: 39-45.
  • 34. Mooren Re, Merkx Ma, Bronkhorst Em, Jansen Ja, Stoelinga Pj. The effect of platelet-rich plasma on early and late bone healing: an experimental study in goats. Int J Oral Maxillofac Surg 2007; 36: 626-31
  • 35. Adams Je. Osteoporosis and bone mineral densitometry. Curr Opin Radiol 1992; 4: 11-20.
  • 36. Horner K, Devlin H. The relationships between two indices of mandibular bone quality and bone mineral density measured by dual energy X-ray absorptiometry. Dentomaxillofac Radiol 1998; 27: 17-21.
  • 37. Miloro M, Haralson Dj, Desa V. Bone healing in a rabbit mandibular defect using platelet-rich plasma. J Oral Maxillofac Surg 2010; 68: 1225-30.
  • 38. Kazakos K, Lyras Dn, Thomaidis V, Agrogiannis G, Botaitis S, Drosos G, Kokka A, Verettas D. Application of PRP gel alone or in combination with guided bone regeneration does not enhance bone healing process: An experimental study in rabbits. J Craniomaxillofac Surg 2011; 39: 49-53.
  • 39. Özdemir Mt, Kir Mç. Repair of long bone defects with demineralized bone matrix and autogenous bone composite. Indian J Orthop 2011; 45: 226-30.

Effects of dentin graft on bone mineral density of newly formed bone: an experimental animal study

Year 2018, , 876 - 885, 29.12.2018
https://doi.org/10.17826/cumj.376439

Abstract

Purpose: The aim of this study was to evaluate the bone mineral density of dentin used as bone graft material in bone defects. 

Materials and Methods: Sixteen male New Zealand white rabbits were used. Two critical-size calvarial bone defects were created in each rabbit and filled with different types of grafts. The bone defects were divided into four groups. The defects in group A1 were filled with processed dentin from human teeth; group A2 was filled with processed dentin from rabbit teeth; group B1 was filled with bovine bone (Bio-Oss), and the defects in group B2 were left empty. Bone mineral density was evaluated using dual-energy X-ray absorptiometry at the 4th and 12th weeks. Results: The bone mineral density values at the 4th week were not statistically different among groups A1, A2 and B1. However, the bone mineral density values at the 12th weeks were significantly higher for group B1 than the other groups. Histopathologic evaluations showed better bone-healing for group B1 than  group A1 and A2. 

Conclusion: Dentin grafts and bovine bone graft have similar outcomes according to the bone mineral density values at the early term of bone-healing (4 weeks). However, in the late term of bone-healing (12 weeks), bone mineral density values of bovine bone were better than the other groups.


References

  • 1. González-García R, Naval-Gías L, Rodríguez-Campo Fj, Muñoz-Guerra Mf, Sastre-Pérez J. Vascularized free fibular flap for the reconstruction of mandibular defects: clinical experience in 42 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 191-202.
  • 2. Takenobu T, Nagano M, Taniike N, Furutani M, Tanaka Y. Mandibular reconstruction using intraoral trifocal bone transport: report of a case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 103: 630-5.
  • 3. Precheur Hv. Bone Graft Materials, Dent Clin N Am 2007; 51: 729-46.
  • 4. Kim Wb, Kim Sg, Lim Sc. Effect of Tisseel on bone healing with particulate dentin and plaster of Paris mixture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 34-40
  • 5. Ozer K, Chung Kc. The use of bone grafts and substitutes in the treatment of distal radius fractures. Hand Clin 2012; 28: 217-23.
  • 6. Towbridge H, Kim S, Suda H. Structure and Functions of the Dentin and Pulp Complex. Cohen S, Burns RC, editors. Pathways of the Pulp. 8th Ed., St. Louis; Mosby. 2002; 411–419
  • 7. Murata M, Pignatello R (editor). Autograft of Dentin Materials for Bone Regeneration. Advances in Biomaterials Science and Biomedical Applications. London: InTech, Chapters published; 2013; p 291-403
  • 8. Kim Sg, Kim Hk, Lim Sc. Combined implantation of particulate dentine, plaster of Paris, and a bone xenograft (Bio-Oss) for bone regeneration in rats. J Craniomaxillofac Surg 2001; 29: 282-288.
  • 9. Gomes Mf, Dos Anjos Mj, Nogueira To, Guimaraes Sa. Histologic evaluation of the osteoinductive property of autogenous demineralized dentin matrix on surgical bone defects in rabbit skulls using human amniotic membrane for guided bone regeneration. Int J OralMaxillofac Implants 2001; 16: 563–71.
  • 10. Gomes Mf, Dos Anjos Mj, Nogueira Tde O, Catanzaro Guimaraes Sa. Autogenous demineralized dentin matrix for tissue engineering applications: radiographic and histomorphometric studies. Int JOral Maxillofac Implants 2002; 17: 488–97.
  • 11. Kim Sg, Yeo Hh, Kim Yk. Grafting of large defect of the jaws with a particulate dentin-plaster of Paris combination. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999; 88: 22-25.
  • 12. Kim Sg, Kim Hk, Lim Sc. Combined implantation of particulate dentine, plaster of Paris, and a bone xenograft (Bio-Oss) for bone regeneration in rats. J Craniomaxillofac Surg 2001; 29: 282-288.
  • 13. Kim Yk, Kim Sg, Byeon Jh. Development of a novel bone grafting material using autogenous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 496-503.
  • 14. Kim YK, Um IW, Cho W, Murata M, Jun S, Lee J. Applications of Moldable Autogenous Tooth Bone Graft (M-AutoBT) Mixed with Hydroxypropylmethyl Cellulose for Sinus Lifting. Journal of Hard Tissue Biology 2015; 24:391-3
  • 15. Homolka P, Beer A, Birkfellner W, Nowotny R, Gahleitner A, Tschabitscher M, Bergmann H. Bone mineral density measurement with dental quantitative CT prior to dental implant placement in cadaver mandibles: pilot study. Radiology. 2002; 224(1):247-52.
  • 16. Marquezan M, Osório A, Sant'Anna E, Souza MM, Maia L. Does bone mineral density influence the primary stability of dental implants? A systematic review. Clin Oral Implants Res. 2012; 23(7):767-74
  • 17. Moharamzadeh K, Freeman C, Black K. Processed bovine dentine as a bone substitute. Br J Oral Maxillofac Surg 2007; 46: 110-113.
  • 18. Dodde R 2nd, Yavuzer R, Bier Uc, Alkadri A, Jackson It. Spontaneous bone healing in the rabbit. J Craniofac Surg 2000; 11: 346-349. 19. Findikcioglu K, Findikcioglu F, Yavuzer R, Elmas C, Atabay K. Effect of platelet-rich plasma and fibrin glue on healing of critical-size calvarial bone defects. J Craniofac Surg 2009; 20: 34-40.
  • 20. Jensen Ss, Broggini N, Hjørting-Hansen E, Schenk R, Buser D. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 2006; 17: 237-243.
  • 21. Misch Ce. Key to Bone Grafting and Bone Grafting Materials, Misch CE, Contemporary Implant Dentistry, 3rd. ed. Mosby, St. Louis 2008; 855-863.
  • 22. Cole As, Calcified Tissues; Bone, Dentin and Cementum, Cole AS, Biochemistry and Oral Biology, 2nd ed. Butterworth and Co. Ltd, Bristol 1988; 435-441.
  • 23. Catanzaro Sa, Catanzaro Bpn, Guimarães Rb, Garcia Na. Osteogenic potential of autogenic demineralized dentin implanted in bony defects in dogs. Int J Oral Maxillofac Surg 1986; 15: 160–169.
  • 24. Cacchioli A, Spaggiari B, Ravanetti F, Martini Fm, Borghetti P, Gabbi C. The critical sized bone defect: morphological study of bone healing. Annali della Facolta di Medicina Veterinaria Universita delgi Studi di Parma 2006; 16: 97-110.
  • 25. Schmitz Jp, Hollinger Jo. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986; 205: 299-308.
  • 26. Hollinger Jo, Kleinschmidt Jc. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1990; 1: 60-68.
  • 27. Kim Sy, Kim Sg, Lim Sc, Bae Cs. Effects on Bone Formation in Ovariectomized Rats After Implantation of Tooth Ash and Plaster of Paris Mixture. J Oral Maxillofac Surg 2004; 62: 852-857.
  • 28. Yagihashi K, Miyazawa K, Togari K, Goto S. Demineralized dentin matrix acts as a scaffold for repair of articular cartilage defects. Calcif Tissue Int 2009; 84: 210-220.
  • 29. Loty B, Courpied Jp, Tomeno B, Postel M, Forest M, Abelanet R. Bone allografts sterilised by irradiation. Biological properties, procurement and results of 150 massive allografts. Int Orthop 1990; 14: 237-42.
  • 30. Moreau Mf, Gallois Y, Baslé Mf, Chappard D. Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials 2000; 21: 369-76.
  • 31. Zhang Y, Homsi D, Gates K, Oakes K, Sutherland V, Wolfinbarger L Jr. A comprehensive study of physical parameters, biomechanical properties and statistical correlations of iliac crest bone wedges used in spinal fusion surgery. IV. Efect of gamma irradiation on mechanical and material properties. Spine 1994; 19: 304-308.
  • 32. Pruss A, Kao M, Gohs U, Koscielny J, Versen R, Pauli G. Effect of gamma irradiation on human cortical bone transplants contaminated with enveloped and non-enveloped viruses. Biologicals 2002; 30: 125–133.
  • 33. Kim Yk, Kim Sg, Yun Py. Autogenous teeth used for bone grafting: a comparasion with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2014; 117: 39-45.
  • 34. Mooren Re, Merkx Ma, Bronkhorst Em, Jansen Ja, Stoelinga Pj. The effect of platelet-rich plasma on early and late bone healing: an experimental study in goats. Int J Oral Maxillofac Surg 2007; 36: 626-31
  • 35. Adams Je. Osteoporosis and bone mineral densitometry. Curr Opin Radiol 1992; 4: 11-20.
  • 36. Horner K, Devlin H. The relationships between two indices of mandibular bone quality and bone mineral density measured by dual energy X-ray absorptiometry. Dentomaxillofac Radiol 1998; 27: 17-21.
  • 37. Miloro M, Haralson Dj, Desa V. Bone healing in a rabbit mandibular defect using platelet-rich plasma. J Oral Maxillofac Surg 2010; 68: 1225-30.
  • 38. Kazakos K, Lyras Dn, Thomaidis V, Agrogiannis G, Botaitis S, Drosos G, Kokka A, Verettas D. Application of PRP gel alone or in combination with guided bone regeneration does not enhance bone healing process: An experimental study in rabbits. J Craniomaxillofac Surg 2011; 39: 49-53.
  • 39. Özdemir Mt, Kir Mç. Repair of long bone defects with demineralized bone matrix and autogenous bone composite. Indian J Orthop 2011; 45: 226-30.
There are 38 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research
Authors

Uğur Mercan 0000-0003-4935-673X

Mahmut Sümer 0000-0001-5137-0800

Sibel Uçak Semirgen 0000-0002-3002-3196

Umut Ballı 0000-0001-5070-0062

Yonca Betil Kabak This is me 0000-0002-3442-8377

Özgün Şenyurt This is me 0000-0002-4222-9845

Publication Date December 29, 2018
Acceptance Date February 12, 2018
Published in Issue Year 2018

Cite

MLA Mercan, Uğur et al. “Effects of Dentin Graft on Bone Mineral Density of Newly Formed Bone: An Experimental Animal Study”. Cukurova Medical Journal, vol. 43, no. 4, 2018, pp. 876-85, doi:10.17826/cumj.376439.