Research Article
BibTex RIS Cite

Relationship between umbilical cord blood vitamin D levels and thymus size in healthy and term newborns

Year 2019, Volume: 44 Issue: 4, 1450 - 1455, 29.12.2019

Abstract

Purpose: Thymus is a primary lymphoid organ which contains the vitamin D receptor. Vitamin D has an immunological regulatory effect on the adaptive and innate immune system. The aim of this study was to determine the relationship between cord blood 25-hydroxy vitamin D levels and thymus size.

Materials and Methods: 149 babies were included in the present study. The cord blood 25-hydroxy vitamin D level was measured. Mothers’ and infants’ features were recorded. Thymus volume were evaluated with ultrasonography. The thymic index and thymus/weight index were calculated. 

Results: In the case of irregular use or non-use of maternal vitamin D, the likelihood of vitamin D deficiency in the cord blood was higher. No difference was observed between the thymic index measurements and maternal vitamin D use and cord blood vitamin D level.

Conclusion: There was no relationship between cord blood vitamin D level and thymus size.


References

  • 1. Hossein-Nezhad A, Mirzaei K, Keshavarz SA, et al. Evidences of dual role of vitamin D through cellular energy homeostasis and inflammation pathway in risk of cancer in obese subjects. Minerva Med 2013; 104(3): 295–307.
  • 2. Gonzalez-Molero I, Rojo-Martinez G, Morcillo S, et al. Hypovitaminosis D and incidence of obesity: a prospective study. Eur J Clin Nutr 2013; 67(6): 680–2.
  • 3. Sloka S, Silva C, Wang J, et al. Predominance of Th2 polarization by vitamin D through a STAT6-dependent mechanism. J Neuroinflammation 2011; 8: 56.
  • 4. Masri OA, Chalhoub JM, Sharara AI. Role of vitamins in gastrointestinal diseases. World J Gastroenterol 2015; 21(17): 5191–209.
  • 5. Dağdeviren-Çakır A, Arvas A, Barut K, et al. Serum vitamin D levels during activation and remission periods of patients with juvenile idiopathic arthritis and familial Mediterranean fever. Turk J Pediatr 2016; 58: 125-131.
  • 6. Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J 2001; 15: 2579–2585.
  • 7. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys 2000; 374(2): 334–8.
  • 8. Schauber J, Dorschner RA, Coda AB, et al. İnjury enhances TLR2 function and antimicrobial peptide expression through a vitamin D- dependent mechanism. J Clin Invest 2007; 117(3): 803–11.
  • 9. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311(5768): 1770–3.
  • 10. Clancy N, Onwuneme C, Carroll A, et al. Vitamin D and neonatal immune function. J Matern Fetal Neonatal Med 2013; 26(7): 639–46.
  • 11. Sadeghi K, Wessner B, Laggner U, et al. Vitamin D3 downregulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol 2006; 36(2): 361–70.
  • 12. Youssef DA, Miller CW, El-Abbassi AM, et al. Antimicrobial implications of vitamin D. Dermatoendocrinol 2011; 3(4): 220–9.
  • 13. Savino W. The thymus gland is a target in malnutrition. Eur J Clin Nutr 2002; 56:S46–S49.
  • 14. Varga I, Pospisilova V, Gmitterova K, et al. The phylogenesis and ontogenesis of the human pharyngeal region focused on the thymus, parathyroid, and thyroid glands. Neuroendcrinol Lett 2008; 29(6):837-45.
  • 15. Staal FJ, Weerkamp F, Langerak AW, et al. Transcriptional control of T lymphocyte differentiation. Stem Cells 2001; 19(3):165-79.
  • 16. Kato S. Thymic microvascular system. Microsc Res Tech 1997; 38:287-99.
  • 17. Weerkamp F, de Haas EF, Naber BA, et al. Age related changes in cellular composition of the thymus in children. J Allergy Clin Immunol 2005; 115(4):834-40.
  • 18. Taub DD, Longo DL. Insights into thymic aging and regeneration. Immunol Rev 2005; 205:72-93.
  • 19. Munns C, Zacharin MR, Rodda CP, et al. Paediatric Endocrine Group; Peadiatric Bone Australia. Prevention and treatment of infant and childhood vitamin D deficiency in Australia and New Zealand: a consensus statement. Med J Aust 2006; 185(5): 268-72.
  • 20. Hasselbalch H, Jeppesen DL, Engelmann MD, et al. Decreased thymus size in formula-fed infants compared to breastfed infants. Acta Paediatr 1996; 85(9):1029–32.
  • 21. Birk NM, Nissen TN, Zingmark V, et al. Bacillus Calmette-Guérin vaccination, thymic size, and thymic output in healthy newborns. Ped Res 2017; 81: 873–880.
  • 22. Calton EK, Keane KN, Newsholme P, et al. The impact of vitamin of D levels on inflammatory status: a systematic review of immune cell studies. PLoS ONE 2015;10 (11): e0141770.
  • 23. Cantorna MT, Synder L, Lin YD, et al. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 2015; 7(4): 3011–21.
  • 24. Deluca HF, Cantorna MT. Vitamin D: its role and uses in imunology. FASEB J 2001; 15(14):2579-85.
  • 25. Cetinkaya M, Erener-Ercan T, Kalayci-Oral T, et al. Maternal/neonatal vitamin D deficiency: a new risk factor for necrotizing enterocolitis in preterm infants? J Perinatol 2017;37(6):673-78.
  • 26. Cetinkaya M, Cekmez F , Buyukkale G, et al. Lower vitamin D levels are associated with increased risk of early-onset neonatal sepsis in term infants. J Perinatol 2015;35(1):39-45.
  • 27. T.C. Sağlık Bakanlığı. Gebelerde D vitamini destek programı rehberi: 2011.
  • 28. McDade TW, Beck MA, Kuzawa CW, et al. Prenatal undernutrition and postnatal growth are associated with adolescent thymic function. J Nutr 2001; 131(4):1225–31.
  • 29. Lewis VM, Twomey JJ, Bealmear P, et al. Age, thymic involution, and circulating thymic hormone activity. J Clin Endocrinol Metab 1978; 47(1):145–50.
  • 30. Cromi A, Ghezzi F, Raffaelli R, et al. Ultrasonographic measurement of thymus size in IUGR fetuses: a marker of the fetal immunoendocrine response to malnutrition. Ultrasound Obstet Gynecol 2009; 33(4):421–6.
  • 31. Olearo E, ObertoM, Oggè G, et al. Thymic volume in healthy, small for gestational age and growth restricted fetuses. Prenat Diagn 2012; 32(7):662–7.
  • 32. Kumar A, Pandey M, Basu S, et al. Asthana RK. Thymic size correlates with cord blood zinc levels in low-birth-weight newborns. Eur J Pediatr. 2014;173(8):1083-7.
  • 33. Garly ML, Trautner SL, Marx C, et al. Thymus size at 6 months of age and subsequent child mortality. J Pediatr 2008; 153(5): 683–8.
  • 34. Hasselbalch H, Jeppesen DL, Ersboll AK, et al. Sonographic measurement of the thymic size in healthy neonates. Relation to clinical variables. Acta Radiol 1997;38(1):95-98.
  • 35. Yekeler E, Tambag A, Tunaci A, et al. Analysis of the thymus in 151 healthy infants from 0 to 2 years of age. J Ultrasound Med 2004; 23(10):1321-6.
  • 36. Yurdakök M, Haziroğlu R, Topaloğlu H. Fetal thymus development in vitamin D deficient rats. Turk J Pediatr 1993;35(3):197-9.

Sağlıklı term yenidoğanlarda umbilikal kord kanında D vitamini düzeylerinin timus büyüklüğü ile ilişkisi

Year 2019, Volume: 44 Issue: 4, 1450 - 1455, 29.12.2019

Abstract

Amaç: Timus vitamin D reseptörü içeren primer bir lenfoid organdır. D vitamini adaptif ve doğal immün system üzerine düzenleyici etkilere sahiptir. Bu çalışmanın amacı kord kanı 25-hidroksi vitamin D düzeyi ile timus büyüklüğü arasındaki ilişkiyi tanımlamaktır.

Gereç ve Yöntem: Çalışmaya 149 bebek alındı. Kord kanı 25-hidroksi vitamin D düzeyleri ölçüldü. Annelerin ve bebeklerin özellikleri kaydedildi. Timus büyüklüğü ultrasonografi ile değerlendirildi. Timik indeks ve timus/ağırlık indeksi hesaplandı.

Bulgular: Annenin D vitaminini düzensiz kullanması veya kullanmaması durumunda kord kanında D vitamin eksikliği olasılığını daha yüksekti. Timik indeks ile annenin vitamin kullanımı ve kord kanı D vitamini düzeyi ile timik indeks arasında ilişki saptanmadı.

Sonuç: Kord kanı D vitamini düzeyi ile timik indeks arasında ilişki saptanmamıştır.


References

  • 1. Hossein-Nezhad A, Mirzaei K, Keshavarz SA, et al. Evidences of dual role of vitamin D through cellular energy homeostasis and inflammation pathway in risk of cancer in obese subjects. Minerva Med 2013; 104(3): 295–307.
  • 2. Gonzalez-Molero I, Rojo-Martinez G, Morcillo S, et al. Hypovitaminosis D and incidence of obesity: a prospective study. Eur J Clin Nutr 2013; 67(6): 680–2.
  • 3. Sloka S, Silva C, Wang J, et al. Predominance of Th2 polarization by vitamin D through a STAT6-dependent mechanism. J Neuroinflammation 2011; 8: 56.
  • 4. Masri OA, Chalhoub JM, Sharara AI. Role of vitamins in gastrointestinal diseases. World J Gastroenterol 2015; 21(17): 5191–209.
  • 5. Dağdeviren-Çakır A, Arvas A, Barut K, et al. Serum vitamin D levels during activation and remission periods of patients with juvenile idiopathic arthritis and familial Mediterranean fever. Turk J Pediatr 2016; 58: 125-131.
  • 6. Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J 2001; 15: 2579–2585.
  • 7. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys 2000; 374(2): 334–8.
  • 8. Schauber J, Dorschner RA, Coda AB, et al. İnjury enhances TLR2 function and antimicrobial peptide expression through a vitamin D- dependent mechanism. J Clin Invest 2007; 117(3): 803–11.
  • 9. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311(5768): 1770–3.
  • 10. Clancy N, Onwuneme C, Carroll A, et al. Vitamin D and neonatal immune function. J Matern Fetal Neonatal Med 2013; 26(7): 639–46.
  • 11. Sadeghi K, Wessner B, Laggner U, et al. Vitamin D3 downregulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol 2006; 36(2): 361–70.
  • 12. Youssef DA, Miller CW, El-Abbassi AM, et al. Antimicrobial implications of vitamin D. Dermatoendocrinol 2011; 3(4): 220–9.
  • 13. Savino W. The thymus gland is a target in malnutrition. Eur J Clin Nutr 2002; 56:S46–S49.
  • 14. Varga I, Pospisilova V, Gmitterova K, et al. The phylogenesis and ontogenesis of the human pharyngeal region focused on the thymus, parathyroid, and thyroid glands. Neuroendcrinol Lett 2008; 29(6):837-45.
  • 15. Staal FJ, Weerkamp F, Langerak AW, et al. Transcriptional control of T lymphocyte differentiation. Stem Cells 2001; 19(3):165-79.
  • 16. Kato S. Thymic microvascular system. Microsc Res Tech 1997; 38:287-99.
  • 17. Weerkamp F, de Haas EF, Naber BA, et al. Age related changes in cellular composition of the thymus in children. J Allergy Clin Immunol 2005; 115(4):834-40.
  • 18. Taub DD, Longo DL. Insights into thymic aging and regeneration. Immunol Rev 2005; 205:72-93.
  • 19. Munns C, Zacharin MR, Rodda CP, et al. Paediatric Endocrine Group; Peadiatric Bone Australia. Prevention and treatment of infant and childhood vitamin D deficiency in Australia and New Zealand: a consensus statement. Med J Aust 2006; 185(5): 268-72.
  • 20. Hasselbalch H, Jeppesen DL, Engelmann MD, et al. Decreased thymus size in formula-fed infants compared to breastfed infants. Acta Paediatr 1996; 85(9):1029–32.
  • 21. Birk NM, Nissen TN, Zingmark V, et al. Bacillus Calmette-Guérin vaccination, thymic size, and thymic output in healthy newborns. Ped Res 2017; 81: 873–880.
  • 22. Calton EK, Keane KN, Newsholme P, et al. The impact of vitamin of D levels on inflammatory status: a systematic review of immune cell studies. PLoS ONE 2015;10 (11): e0141770.
  • 23. Cantorna MT, Synder L, Lin YD, et al. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 2015; 7(4): 3011–21.
  • 24. Deluca HF, Cantorna MT. Vitamin D: its role and uses in imunology. FASEB J 2001; 15(14):2579-85.
  • 25. Cetinkaya M, Erener-Ercan T, Kalayci-Oral T, et al. Maternal/neonatal vitamin D deficiency: a new risk factor for necrotizing enterocolitis in preterm infants? J Perinatol 2017;37(6):673-78.
  • 26. Cetinkaya M, Cekmez F , Buyukkale G, et al. Lower vitamin D levels are associated with increased risk of early-onset neonatal sepsis in term infants. J Perinatol 2015;35(1):39-45.
  • 27. T.C. Sağlık Bakanlığı. Gebelerde D vitamini destek programı rehberi: 2011.
  • 28. McDade TW, Beck MA, Kuzawa CW, et al. Prenatal undernutrition and postnatal growth are associated with adolescent thymic function. J Nutr 2001; 131(4):1225–31.
  • 29. Lewis VM, Twomey JJ, Bealmear P, et al. Age, thymic involution, and circulating thymic hormone activity. J Clin Endocrinol Metab 1978; 47(1):145–50.
  • 30. Cromi A, Ghezzi F, Raffaelli R, et al. Ultrasonographic measurement of thymus size in IUGR fetuses: a marker of the fetal immunoendocrine response to malnutrition. Ultrasound Obstet Gynecol 2009; 33(4):421–6.
  • 31. Olearo E, ObertoM, Oggè G, et al. Thymic volume in healthy, small for gestational age and growth restricted fetuses. Prenat Diagn 2012; 32(7):662–7.
  • 32. Kumar A, Pandey M, Basu S, et al. Asthana RK. Thymic size correlates with cord blood zinc levels in low-birth-weight newborns. Eur J Pediatr. 2014;173(8):1083-7.
  • 33. Garly ML, Trautner SL, Marx C, et al. Thymus size at 6 months of age and subsequent child mortality. J Pediatr 2008; 153(5): 683–8.
  • 34. Hasselbalch H, Jeppesen DL, Ersboll AK, et al. Sonographic measurement of the thymic size in healthy neonates. Relation to clinical variables. Acta Radiol 1997;38(1):95-98.
  • 35. Yekeler E, Tambag A, Tunaci A, et al. Analysis of the thymus in 151 healthy infants from 0 to 2 years of age. J Ultrasound Med 2004; 23(10):1321-6.
  • 36. Yurdakök M, Haziroğlu R, Topaloğlu H. Fetal thymus development in vitamin D deficient rats. Turk J Pediatr 1993;35(3):197-9.
There are 36 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research
Authors

Selvi Gülaşı 0000-0002-7908-781X

Mustafa Kurthan Mert 0000-0002-2789-2710

Gökhan Söker 0000-0002-5369-4769

Ümit Çelik 0000-0002-1200-0142

Publication Date December 29, 2019
Acceptance Date May 17, 2019
Published in Issue Year 2019 Volume: 44 Issue: 4

Cite

MLA Gülaşı, Selvi et al. “Relationship Between Umbilical Cord Blood Vitamin D Levels and Thymus Size in Healthy and Term Newborns”. Cukurova Medical Journal, vol. 44, no. 4, 2019, pp. 1450-5.