Research Article
BibTex RIS Cite
Year 2012, Volume: 33 Issue: 1, 65 - 76, 21.05.2012

Abstract

References

  • Langer, L., Bayot, V., Grivei, E. and Issi, J-P., 1996. Quantum Transport in a Multiwalled Carbon Nanotube, Phys. Rev. Lett. 76, 479.
  • Dresselhaus, M. S., Dresselhaus, G. and Eklund, P. C., 1996. Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, NY.
  • Dresselhaus, M. S., 2004. Nanotubes: A step in synthesis, Nature Materials 3, 665 - 666.
  • Mintmire, J., Dunlap, B., and White, C., (1992), Are Fullerene Tubules Metallic?, Phys. Rev. Lett. 68, 631.
  • Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M., 1992a. Electronic structure of chiral graphene tubules, Appl. Phys. Lett., 60, 2204.
  • Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M. S., 1992b. Electronic structure of graphene tubules based on C60, Phys. Rev. B 46, 1804–1811.
  • Endo, M., Iijima, S. and Dresselhaus, M., 1996. Carbon Nanotubes, Elsiver.
  • Gräber, M. R., 2006. Accessing the quantum world through electronic transport in carbon nanotubes,
  • Philosophisch-Naturwissenschaftlichen
  • Fakultät der Universität Basel, Switzerland, 115.
  • Ifadir, S., 2005. Liquid Effect On Single Contacted Carbon Nanotubes Grown By Chemical Vapor Deposition, Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel, Switzerland, 58.
  • Buchs, G., 2008. Local Modification and Characterization of the Electronic Structure of Carbon Nanotubes, Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel, Switzerland, 184.
  • Babić, B., 2004. Electrical Characterization of Carbon Nanotubes grown by the Chemical Vapor Deposition Method, Philosophisch-Naturwissenschaftlichen Fakultät der Universität Base, 1l8.
  • Samsonidze, G. G., Barros, E. B., Saito, R., Jiang, J., Dresselhaus G. and Dresselhaus, M. S., 2007. Electron-phonon coupling mechanism in two-dimensional graphite and single-wall carbon nanotubes, Physical Review B, 75, 155420.
  • Zheng, L. X., O'Connell, M. J., Doorn, S. K., Liao, X. Z., Zhao, Y. H., Akhadov, E. A., Hoffbauer, M. A., Roop, B. J., Jia, Q. X., Dye, R. C., Peterson, D. E., Huang, S. M., Liu, J. and Zhu, Y. T., 2004. Ultralong single-wall carbon nanotubes, Nature Materials 3, 673 - 676.
  • Hamada, N., Sawada S. and Oshiyama, A., 1992. New one-dimensional conductors: Graphitic microtubules, Phys.Rev.Lett,. 68,1579.
  • Saito, R., Dresselhaus G. and Dresselhaus, M. S., 1998. Physical Properties of Carbon Nanotubes, Imperial College Press.
  • Kittel, C., Solid State Physics, 1996. Hoboken, NJ: John Wiley and Sons, Inc.
  • Wildoer, J. W.G., Venema, L. C., Rinzler, A. G., Smalley, R. E. and Dekker, C., 1998. Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59
  • http://www.wolfram.com/
  • Odom, T. W., Huang, J - L., Kim, P., Lieber, C. M., 1997. Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62-64.
  • O'Connell, M. J., Eibergen, E. D. and Doorn, S.K., 2005. Chiral selectivity in the charge- transfer bleaching of single-walled carbon-nanotube spectra, Nature Materials 4, 412 - 418
  • Saito, R., Sato, K., Oyama, Y., Jiang, J., Samsonidze, G. G., Dresselhaus, G. and Dresselhaus, M. S., 2005. Cutting lines near the Fermi energy of single-wall carbon nanotubes, Physical Review B 72, 153413.
  • Samsonidze, G., Saito, R., Jorio, A., Pimenta, M. A., Souza Filho, A. G., Grüneis, A., Dresselhaus, G. and Dresselhaus, M. S., 2004. The Concept of Cutting Lines in Carbon Nanotube, Applied Physics A: Materials Science & Processing, Volume 78, Number 8, Pages 1099-1105

Calculation of Cutting Lines of Single-Walled Carbon Nanotubes

Year 2012, Volume: 33 Issue: 1, 65 - 76, 21.05.2012

Abstract

Carbon nanotubes (CNs) are hexagonally shaped arrangements of carbon atoms that have been rolled into tubes with outstanding properties. Carbon nanotubes are among the stiffest and strongest fibers known, and have remarkable electronic properties and many other unique characteristics. All properties of the carbon nanotubes are determined by its electronic structure. The main focus of this study has been to investigate the basic electronic band structure of carbon nanotubes and to understand the origin of the cutting lines. For this purposes brief introduction to the electronic properties of carbon nanotubes was given and then 3D electronic band structure was plotted. For different chirality vectors (n, m) 1D and 2D first Brillouin zones and cutting lines of SWNT were calculated and plotted.

References

  • Langer, L., Bayot, V., Grivei, E. and Issi, J-P., 1996. Quantum Transport in a Multiwalled Carbon Nanotube, Phys. Rev. Lett. 76, 479.
  • Dresselhaus, M. S., Dresselhaus, G. and Eklund, P. C., 1996. Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, NY.
  • Dresselhaus, M. S., 2004. Nanotubes: A step in synthesis, Nature Materials 3, 665 - 666.
  • Mintmire, J., Dunlap, B., and White, C., (1992), Are Fullerene Tubules Metallic?, Phys. Rev. Lett. 68, 631.
  • Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M., 1992a. Electronic structure of chiral graphene tubules, Appl. Phys. Lett., 60, 2204.
  • Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M. S., 1992b. Electronic structure of graphene tubules based on C60, Phys. Rev. B 46, 1804–1811.
  • Endo, M., Iijima, S. and Dresselhaus, M., 1996. Carbon Nanotubes, Elsiver.
  • Gräber, M. R., 2006. Accessing the quantum world through electronic transport in carbon nanotubes,
  • Philosophisch-Naturwissenschaftlichen
  • Fakultät der Universität Basel, Switzerland, 115.
  • Ifadir, S., 2005. Liquid Effect On Single Contacted Carbon Nanotubes Grown By Chemical Vapor Deposition, Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel, Switzerland, 58.
  • Buchs, G., 2008. Local Modification and Characterization of the Electronic Structure of Carbon Nanotubes, Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel, Switzerland, 184.
  • Babić, B., 2004. Electrical Characterization of Carbon Nanotubes grown by the Chemical Vapor Deposition Method, Philosophisch-Naturwissenschaftlichen Fakultät der Universität Base, 1l8.
  • Samsonidze, G. G., Barros, E. B., Saito, R., Jiang, J., Dresselhaus G. and Dresselhaus, M. S., 2007. Electron-phonon coupling mechanism in two-dimensional graphite and single-wall carbon nanotubes, Physical Review B, 75, 155420.
  • Zheng, L. X., O'Connell, M. J., Doorn, S. K., Liao, X. Z., Zhao, Y. H., Akhadov, E. A., Hoffbauer, M. A., Roop, B. J., Jia, Q. X., Dye, R. C., Peterson, D. E., Huang, S. M., Liu, J. and Zhu, Y. T., 2004. Ultralong single-wall carbon nanotubes, Nature Materials 3, 673 - 676.
  • Hamada, N., Sawada S. and Oshiyama, A., 1992. New one-dimensional conductors: Graphitic microtubules, Phys.Rev.Lett,. 68,1579.
  • Saito, R., Dresselhaus G. and Dresselhaus, M. S., 1998. Physical Properties of Carbon Nanotubes, Imperial College Press.
  • Kittel, C., Solid State Physics, 1996. Hoboken, NJ: John Wiley and Sons, Inc.
  • Wildoer, J. W.G., Venema, L. C., Rinzler, A. G., Smalley, R. E. and Dekker, C., 1998. Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59
  • http://www.wolfram.com/
  • Odom, T. W., Huang, J - L., Kim, P., Lieber, C. M., 1997. Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62-64.
  • O'Connell, M. J., Eibergen, E. D. and Doorn, S.K., 2005. Chiral selectivity in the charge- transfer bleaching of single-walled carbon-nanotube spectra, Nature Materials 4, 412 - 418
  • Saito, R., Sato, K., Oyama, Y., Jiang, J., Samsonidze, G. G., Dresselhaus, G. and Dresselhaus, M. S., 2005. Cutting lines near the Fermi energy of single-wall carbon nanotubes, Physical Review B 72, 153413.
  • Samsonidze, G., Saito, R., Jorio, A., Pimenta, M. A., Souza Filho, A. G., Grüneis, A., Dresselhaus, G. and Dresselhaus, M. S., 2004. The Concept of Cutting Lines in Carbon Nanotube, Applied Physics A: Materials Science & Processing, Volume 78, Number 8, Pages 1099-1105
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Editorial
Authors

Erdem Uzun

Publication Date May 21, 2012
Published in Issue Year 2012 Volume: 33 Issue: 1

Cite

APA Uzun, E. (2012). Calculation of Cutting Lines of Single-Walled Carbon Nanotubes. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 33(1), 65-76.
AMA Uzun E. Calculation of Cutting Lines of Single-Walled Carbon Nanotubes. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. September 2012;33(1):65-76.
Chicago Uzun, Erdem. “Calculation of Cutting Lines of Single-Walled Carbon Nanotubes”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 33, no. 1 (September 2012): 65-76.
EndNote Uzun E (September 1, 2012) Calculation of Cutting Lines of Single-Walled Carbon Nanotubes. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 33 1 65–76.
IEEE E. Uzun, “Calculation of Cutting Lines of Single-Walled Carbon Nanotubes”, Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 33, no. 1, pp. 65–76, 2012.
ISNAD Uzun, Erdem. “Calculation of Cutting Lines of Single-Walled Carbon Nanotubes”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi 33/1 (September 2012), 65-76.
JAMA Uzun E. Calculation of Cutting Lines of Single-Walled Carbon Nanotubes. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2012;33:65–76.
MLA Uzun, Erdem. “Calculation of Cutting Lines of Single-Walled Carbon Nanotubes”. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, vol. 33, no. 1, 2012, pp. 65-76.
Vancouver Uzun E. Calculation of Cutting Lines of Single-Walled Carbon Nanotubes. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi. 2012;33(1):65-76.