Research Article
BibTex RIS Cite

In vitro Cytogenetic Analysis in Human Cultured Blood Lymphocytes of Newly Synthesızed Two Different Benzoic Acid Derivatives [(4-(3-acetyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid) and (4-(3-cinamoyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid)]

Year 2022, Volume: 1 Issue: 1, 6 - 20, 30.01.2022

Abstract

Globally, benzoic acid and its various derivatives are widely used as antibacterial and antifungal agents, as well as in the hygiene, cosmetic, food, and pharmaceutical industries. This study is planned to reveal the cytotoxic and genotoxic identity of the newly synthesized pyrrole derivative molecules [4-(3-acetyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid (D085)] and pyrrole-chalcone hybrid derivative [4-(3-cinamoyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid (D085-K)]. Experiments were performed using in vitro chromosome aberration (CA) and micronucleus (MN) tests in human peripheral lymphocytes (HPL). The test substance concentrations used in the study were determined via a preliminary study. Based on the genotoxic and cytotoxic effects of both test compounds, the 24-hour treatment was found to be more effective than the 48-hour treatment. The fact that the induced MN frequency is similar to the CA frequency gives a preliminary idea about the clastogenic potential of the test substances. Compound D085 induced a base change mutation, while D085-K induced a frameshift mutation. Furthermore, in this study, high concentrations of the test compounds were generally found to be cytotoxic according to MI and NDI data as indicators of cytotoxicity.

Supporting Institution

Çukurova Üniversitesi

Project Number

FYL-2018-10557

Thanks

This research was funded by Unit of Scientific Research Projects, Cukurova University (CUBAP), Turkey.

References

  • [1]Breen EC, Walsh JJ (2010). Tubulin-targeting agents in hybrid drugs. Current Medicinal Chemistry; 2010, 17: 609-639. https://doi.org/10.2174/092986710790416254
  • [2]Joule JA, Mills K, Smith GF (2000). Heterocycl-chem. 4th Edition UK: Blackwell Science Publishers.
  • [3]Danks TN (1999). Microwave assisted synthesis of pyrroles. Tetrahedron Letters; 40(20): 3957-3960. https://doi.org/10.1016/S0040-4039(99)00620-6
  • [4]Gabriele B, Salerno G, Fazio A, Bossio MR (2001). Palladium-catalyzed cycloisomerization of (Z)-(2-en-4-ynyl)amines: a new synthesis of substituted pyrroles. Tetrahedron Letters; 42(7), 1339-1341. https://doi.org/10.1016/S0040-4039(00)02206-1
  • [5]Farcas S, Namy JL (2001). Samarium diiodide promoted reactions of a diphenyl α iminoketone, a new synthesis of some pyrrole derivaties. Tetrahedron; 57(23): 4881-4888.
  • [6]Deryagina EN, Russavakaya NV, Vvedenskii VY (1999). Synthesis of 1-[5-(2, 2'-dithienyl)]-1-ethanone oxime and its reaction with acetylene. Russian Journal of Organic Chemistry; 35(8): 1225-1227.
  • [7]Ranu BC, Hajra A (2001). Synthesis of alkyl-substitued pyrroles by three-component coupling of carbonyl compound, amine and nitro-alkane/alkene on a solid surface of silica gel/alumina under microwave irradiation. Tetrahedron; 57(22): 4767-4773.
  • [8]Xu X, Zhang Y (2002). Synthesis of 3H-pyrroles promoted by samarium/cat. iodine system, synthetic commun. 32(17): 2643-2650.
  • [9]Chen BC, Guang-Zhi Z, Katritzky AR, Yousaf TI (1986). An H-1, C-13 and N-15 NMR Study of the Paal-Knorr condensation of acetonylacetone with primary amines. Tetrahedron; 42(2): 623-628. https://doi.org/10.1016/S0040-4020(01)87462-7
  • [10]Dede B (2006). Önemli bir beş-üyeli heteroaromatik bileşik: Pirol. Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Fen Bilimleri Dergisi, 22(1): 121-141.
  • [11]Nandi S, Ray JK (2011). Copper catalyzed synthesis of highly substituted pyrrole and isoindole derivatives. Tetrahedron Letters; 52: 6203-6206.
  • [12]Idhayadhulla A, Kumar RS, Abdul Nasser AJ (2011). Synthesis, characterization and antimicrobial activity of new pyrrole derivatives. Journal of the Mexican Chemical Society; 55: 218-223.
  • [13]Dhar DN (1981). The chemistry of chalcones and related compounds. Wiley-Interscience, New York.
  • [14]Dimmock JR, Elias DW, Beazely MA, Kandepu NM (1999). Bioactivities of chalcones. Curr. Med. Chem; 6(12): 1125-1149.
  • [15]Lunardi F, Guzela M, Rodrigues AT, Correa R, Eger-Mangrich I, Steindel M, Grisard EC, Assreuy J, Calixto JB, Santos ARS (2003). Trypanocidal and leishmanicidal properties of substitution-containing chalcones. Antimicrobial Agents and Chemotherapy; 1449-1451. https://doi.org/10.1128/AAC.47.4.1449-1451.2003
  • [16]Mahapatra DK, Asati V, Bharti SK (2015a). Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. European Journal of Medicinal Chemistry; 92: 839-865. https://doi.org/10.1016/j.ejmech.2015.01.051
  • [17]Mahapatra DK, Bharti SK, Asati V (2015b). Anti-cancer chalcones: Structural and molecular target perspectives. European Journal of Medicinal Chemistry; 98; 69-114. https://doi.org/10.1016/j.ejmech.2015.05.004
  • [18]Mahapatra DK, Bharti SK, Asati V (2015c). Chalcone scaffolds as anti infective agents: Structural and molecular target perspectives. European Journal of Medicinal Chemistry; 496-524. https://doi.org/10.1016/j.ejmech.2015.06.052
  • [19]Mahapatra DK, Bharti SK (2016). Therapeutic potential of chalcones as cardiovascular agents. Life Sciences;154-172. https://doi.org/10.1016/j.lfs.2016.02.048
  • [20]Kumar R, Lown JW (2003). Design, synthesis and in vitro cytotoxicity studies of novel pyrrolo [2,1][1,4] benzodiazepine-glycosylated pyrrole and imidazole polyamide conjugates. https://doi.org/10.1039/B306685A.
  • [21]Boulamwini JK, Addo J, Kamath S, Patil S, Mason D, Ores M (2005). Small molecule antagonists of the Mdm2 oncoprotein as anticancer agents. Current Cancer Drug Targets; 5: 57-68. https://doi.org/10.2174/1568009053332672.
  • [22]Herencia F, Ferrandiz ML, Ubeda A, Dominguez JN, Charris JE, Lobo GM, Alcarez MJ (1998). Synthesis and anti-inflammatory activity of chalcone derivatives. Bioorg. and Med. Chem.; 8: 1169-1174. https://doi.org/10.1016/S0960-894X(98)00179-6
  • [23]Rao YK, Fang SH, Tzeng YM (2004). Differential effects of synthesized 2’-oxigenated chalcone derivatives: Modulation of human cell cycle phase distribution. Bioorganic and Medicinal Chemistry; 12: 2679-2686. https://doi.org/10.1016/j.bmc.2004.03.014
  • [24]Satyanarayana M, Tiwari P, Tripathi BK, Srivastava AK, Pratap R (2004). Synthesis and antihyperglycemic activity of chalcone based arlyoxypropanolamines. Bioorganic and Medicinal Chemistry; 12: 883-889.
  • [25]Wu J, Wang X, Yi Y, Lee K (2003). Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus desmos. Bioorganic&Medicinal Chemistry Letters; 13: 1813-1815.
  • [26]Fayed TA, Awad MK (2004). Dual emission of chalcone-analogue dyes emitting in the red region. Chemical Physics; 303: 317-326. https://doi.org/10.1016/j.chemphys.2004.06.023
  • [27]Mukherjee S, Kumar V, Prasad AK, Raj HG, Bracke ME, Olsen CE, Jain SC, Parmar VS (2001). Synhetic and biological activity evaluation studies on novel 1,3-diarylpropenones. Bioorg. Med. Chem.; 9: 337-345. https://doi.org/10.1016/S0968-0896(00)00249-2
  • [28]Hu Z, Liu J, Dong Z, Guo L, Wang D, Zeng P (2004). Synthesis of chalcones catalysed by SOCI2/EtOH. Journal of Chemıcal Research; 158-159.
  • [29]Rida SM, Soliman FS, Badawy ES (1986). Novel benzimidazoles with potential antimicrobial and antineoplastic activities. Pharmazie.;41(8): 563-5.
  • [30]Wigerinck P, Van Aerschot A, Janssen G, Claes P, Balzarini J, De Clercq E, Herdewijn P (1990). Synthesis and antiviral activity of 3'-heterocyclic substituted 3'-deoxythymidines. J. Med. Chem.; 1990 Feb; 33(2): 868-73.
  • [31]Bandyopadhyay D, Mukherjee S, Granados JC, Short JD, Banik BK (2012). Ultrasound-assisted bismuth nitrate-induced green synthesis of novel pyrrole derivatives and their biological evaluation as anticancer agents. Eur J Med Chem.; 2012 Apr; 50: 209-215. https://doi.org/10.1016/j.ejmech.2012.01.055.
  • [32]Geng Y, Wang X, Yang L, Sun H, Wang Y, Zhao Y, She R, Wang MX, Wang DX, Tang J (2015). Antitumor activity of a 5-hydroxy-1H-pyrrol-2-(5H)-one-based synthetic small molecule in vitro and in vivo. PLoS One.; 2015 Jun 4; 10(6): e0128928. https://doi.org/10.1371/journal.pone.0128928
  • [33]Kumar D, Kumar NM, Akamatsu K, Kusaka E, Harada H, Ito T (2010). Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorganic&Medicinal Chemistry Letters; 3916-3919. https://doi.org/10.1016/j.bmcl.2010.05.016
  • [34]Rizvi SUF, Siddiqui HL, Johns M, Detorio M, Schinazi RF (2012). Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Med. Chem. Res.; 21: 3741-9.
  • [35]Maronpot RR (2015). Toxicological assessment of ashitaba chalcone. Food and Chemical Toxicology; 77: 111-119. https://doi.org/10.1016/j.fct.2014.12.021
  • [36]Akkurt D (2014). Mutagenic activities of benzoxazole derivative 12 compounds on Salmonella typhimurium TA98, TA100. Master Thesis, Hacettepe University, Institute of Science, Department of Biology.
  • [37]Yüzbaşıoğlu D, Zengin N, Ünal F (2014). Food preservatives and genotoxicity tests. Food; 39 (3): 179-186.
  • [38]Akbaşlar D (2018). Synthesis of 1,2,3,4-Tetrasubstituted pyrrole compounds in lactic acid media by one pot-three component method: heteroaril derivatives of these molecules and ınvestigation antimicrobial activities of these molecules. PhD Thesis, Cukurova University, Instıtute of Natural and Applied Sciences, Department of Chemistry.
  • [39]Evans HJ (1984). Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. Handbook of mutagenicity test procedures. In: Kilbey BJ, Legator M, Nichols W and Ramel C (Eds.), Second edition, Elsevier Science Publishers, BV, pp. 405-427.
  • [40]Rencüzoğulları E, Topaktaş M (1991). The relationship between quantities of bromodeoxyuridine and human peripheral blood with determination of the best differential staining of sister chromatids using chromosome medium-B. Fen ve Mühendislik Bilimleri Dergisi; 5(3): 19-24.
  • [41]Mace ML JR, Daskal Y, Wray W (1978). Scanning electron microscopy of chromosome aberrations. Mutation Res.; 52: 199-206. https://doi.org/10.1016/0027-5107(78)90141-0
  • [42]Rothfuss A, Schutz P, Bochum S, Volm T, Elberhard E, Kreinberg R, Vogel V, Speit G (2000). Induced micronucleus frequencies in peripheral lymphocytes as a screening test for carries of a BRCA1 mutation in Breast cancer families. Cancer Res.; 60: 390-394.
  • [43]Maron D, Ames BN (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects; 113, (3-4), 173-215, ISSN 0165-1161.
  • [44]Ames BN, McCann J, Yamasaki E (1975). Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res.; 31: 347-364.
  • [45]Ord MJ, Herbert A, Mattocks AR (1985). The ability of bifunctional and monofunctional pyrrole compounds to induce Sister-Chromatid Exchange (SCE) in human lymphocytes and mutations in Salmonella typhimurium. Mutation Research; 149: 485-493. https://doi.org/10.1016/0027-5107(85)90167-8
  • [46]Skoutelis C, Antonopoulou M, Konstantinou I, Vlastos D, Papadaki M (2017). Photodegradation of 2-Chloropyridine in aqueous solution: Reaction pathways and genotoxicity of intermediate products. Journal of Hazardous Materials.; 753-7635. https://doi.org/10.1016/j.jhazmat.2016.09.058.
  • [47]Limoli CL, Giedzinski E (2003). Induction of chromosomal ınstability by chronic oxidative stress. Elsevier; 339-346. https://doi.org/10.1016/S1476-5586(03)80027-1
  • [48]Cooke MS, Evans MD, Dizdaroğlu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB Journal.; 0892-6638/03/0017-1195. https://doi.org/10.1096/fj.02-0752rev.
  • [49]Barzilai A, Yamamoto K-I (2004). DNA damage responses to oxidative stress. Elsevier, DNA Repair 3: 1109-1115. https://doi.org/10.1016/j.dnarep.2004.03.002.
  • [50]Salmon TB, Evert BA, Song B, Doetsch PW (2004). Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. 3712-3723 Nucleic Acids Research, 2004, Vol. 32, No. 12. https://doi.org/10.1093/nar/gkh696
  • [51]Gonzalez-Hunt CP, Wadhwa M, Sanders LH (2018). DNA damage by oxidative stress: Measurement strategies for two genomes. Current Opinion in Toxicology; 7: 87-94. https://doi.org/10.1016/j.cotox.2017.11.001.
  • [52]Diaz-Perez S, Kane N, Kurmis AA, Yang F, Kummer NT, Dervan PB, Nickols NG (2018). Interference with DNA repair after ionizing radiation by a pyrrole-imidazole polyamide. Research Artıcle. Plos One; 13(5): e0196803. https://doi.org/10.1371/journal.pone.0196803
  • [53]Wurtz NR, Dervan PB (2000). Sequence specific alkylation of DNA by hairpin Pyrrole-imidazole polyamide conjugates. Chemistry&Biology; 7: 153-161. https://doi.org/10.1016/S1074-5521(00)00085-5
  • [54]Baliga R, Baird EE, Herman DM, Melander C, Dervan PB, Crothers DM (2001). Kinetic consequences of covalent linkage of DNA binding polyamides. Biochemistry; 40: 3-8. https://doi.org/10.1021/bi0022339.
  • [55]Janssen BMG, Van Ommeren SPFI, Merkx M (2015). Efficient synthesis of peptide and protein functionalized pyrrole-imidazole polyamides using native chemical ligation. Int. J. Mol. Sci.; 16: 12631-12647. https://doi.org/10.3390/ijms160612631
  • [56]Zhao R, Guan LL, Oreski B, Lown JW (1998). Synthesis, topoisomerase I inhibitory activity and in vitro cytotoxicity of camptothecin derivatives bearing five-membered heterocycle containing 10-substituents. Anticancer Drug Des.; 13(2): 145-57.
  • [57]Montaner B, Castillo-Avila W, Martinell M, Öllinger R, Aymami J, Giralt E, Perez-Tomas R (2005). DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicological Sciences; 85: 870-879. https://doi.org/10.1093/toxsci/kfi149
  • [58]WO/2006/092599 (08.09.2006) (International Application Number: PCT/GB2006/000742 International Filing Date: 02.03.2006) (https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2006092599&tab=PCTBIBLIO).
  • [59]http://eprints.lincoln.ac.uk/32123/.
  • [60]Özdemir A, Altıntop MD, Sever B, Gençer HK, Kapkaç HA, Atlı Ö, Baysal M (2017). A new series of pyrrole-based chalcones: Synthesis and evaluation of antimicrobial activity, cytotoxicity and genotoxicity. Molecules; 22(12). https://doi.org/10.3390/molecules22122112
  • [61]Ovonramwen OB, Owolabi BJ, Oviawe AP (2019). Recent advances in chalcones: Synthesis, transformation and pharmacological activities. Asian Journal of Chemical Sciences; 1-16. https://doi.org/10.9734/ajocs/2019/v6i318996.
  • [62]Budhiraja A, Kadian K, Kaur M, Aggarwal V, Garg A, Sapra S, Nepali K, Suri OP, Dhar KL (2011). Synthesis and biological evaluation of naphthalene, furan and pyrrole based chalcones as cytotoxic and antimicrobial agents. Med Chem Res; 21 (9): 2133–2140. https://doi.org/10.1007/s00044-011-9733-y.
Year 2022, Volume: 1 Issue: 1, 6 - 20, 30.01.2022

Abstract

Project Number

FYL-2018-10557

References

  • [1]Breen EC, Walsh JJ (2010). Tubulin-targeting agents in hybrid drugs. Current Medicinal Chemistry; 2010, 17: 609-639. https://doi.org/10.2174/092986710790416254
  • [2]Joule JA, Mills K, Smith GF (2000). Heterocycl-chem. 4th Edition UK: Blackwell Science Publishers.
  • [3]Danks TN (1999). Microwave assisted synthesis of pyrroles. Tetrahedron Letters; 40(20): 3957-3960. https://doi.org/10.1016/S0040-4039(99)00620-6
  • [4]Gabriele B, Salerno G, Fazio A, Bossio MR (2001). Palladium-catalyzed cycloisomerization of (Z)-(2-en-4-ynyl)amines: a new synthesis of substituted pyrroles. Tetrahedron Letters; 42(7), 1339-1341. https://doi.org/10.1016/S0040-4039(00)02206-1
  • [5]Farcas S, Namy JL (2001). Samarium diiodide promoted reactions of a diphenyl α iminoketone, a new synthesis of some pyrrole derivaties. Tetrahedron; 57(23): 4881-4888.
  • [6]Deryagina EN, Russavakaya NV, Vvedenskii VY (1999). Synthesis of 1-[5-(2, 2'-dithienyl)]-1-ethanone oxime and its reaction with acetylene. Russian Journal of Organic Chemistry; 35(8): 1225-1227.
  • [7]Ranu BC, Hajra A (2001). Synthesis of alkyl-substitued pyrroles by three-component coupling of carbonyl compound, amine and nitro-alkane/alkene on a solid surface of silica gel/alumina under microwave irradiation. Tetrahedron; 57(22): 4767-4773.
  • [8]Xu X, Zhang Y (2002). Synthesis of 3H-pyrroles promoted by samarium/cat. iodine system, synthetic commun. 32(17): 2643-2650.
  • [9]Chen BC, Guang-Zhi Z, Katritzky AR, Yousaf TI (1986). An H-1, C-13 and N-15 NMR Study of the Paal-Knorr condensation of acetonylacetone with primary amines. Tetrahedron; 42(2): 623-628. https://doi.org/10.1016/S0040-4020(01)87462-7
  • [10]Dede B (2006). Önemli bir beş-üyeli heteroaromatik bileşik: Pirol. Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Fen Bilimleri Dergisi, 22(1): 121-141.
  • [11]Nandi S, Ray JK (2011). Copper catalyzed synthesis of highly substituted pyrrole and isoindole derivatives. Tetrahedron Letters; 52: 6203-6206.
  • [12]Idhayadhulla A, Kumar RS, Abdul Nasser AJ (2011). Synthesis, characterization and antimicrobial activity of new pyrrole derivatives. Journal of the Mexican Chemical Society; 55: 218-223.
  • [13]Dhar DN (1981). The chemistry of chalcones and related compounds. Wiley-Interscience, New York.
  • [14]Dimmock JR, Elias DW, Beazely MA, Kandepu NM (1999). Bioactivities of chalcones. Curr. Med. Chem; 6(12): 1125-1149.
  • [15]Lunardi F, Guzela M, Rodrigues AT, Correa R, Eger-Mangrich I, Steindel M, Grisard EC, Assreuy J, Calixto JB, Santos ARS (2003). Trypanocidal and leishmanicidal properties of substitution-containing chalcones. Antimicrobial Agents and Chemotherapy; 1449-1451. https://doi.org/10.1128/AAC.47.4.1449-1451.2003
  • [16]Mahapatra DK, Asati V, Bharti SK (2015a). Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. European Journal of Medicinal Chemistry; 92: 839-865. https://doi.org/10.1016/j.ejmech.2015.01.051
  • [17]Mahapatra DK, Bharti SK, Asati V (2015b). Anti-cancer chalcones: Structural and molecular target perspectives. European Journal of Medicinal Chemistry; 98; 69-114. https://doi.org/10.1016/j.ejmech.2015.05.004
  • [18]Mahapatra DK, Bharti SK, Asati V (2015c). Chalcone scaffolds as anti infective agents: Structural and molecular target perspectives. European Journal of Medicinal Chemistry; 496-524. https://doi.org/10.1016/j.ejmech.2015.06.052
  • [19]Mahapatra DK, Bharti SK (2016). Therapeutic potential of chalcones as cardiovascular agents. Life Sciences;154-172. https://doi.org/10.1016/j.lfs.2016.02.048
  • [20]Kumar R, Lown JW (2003). Design, synthesis and in vitro cytotoxicity studies of novel pyrrolo [2,1][1,4] benzodiazepine-glycosylated pyrrole and imidazole polyamide conjugates. https://doi.org/10.1039/B306685A.
  • [21]Boulamwini JK, Addo J, Kamath S, Patil S, Mason D, Ores M (2005). Small molecule antagonists of the Mdm2 oncoprotein as anticancer agents. Current Cancer Drug Targets; 5: 57-68. https://doi.org/10.2174/1568009053332672.
  • [22]Herencia F, Ferrandiz ML, Ubeda A, Dominguez JN, Charris JE, Lobo GM, Alcarez MJ (1998). Synthesis and anti-inflammatory activity of chalcone derivatives. Bioorg. and Med. Chem.; 8: 1169-1174. https://doi.org/10.1016/S0960-894X(98)00179-6
  • [23]Rao YK, Fang SH, Tzeng YM (2004). Differential effects of synthesized 2’-oxigenated chalcone derivatives: Modulation of human cell cycle phase distribution. Bioorganic and Medicinal Chemistry; 12: 2679-2686. https://doi.org/10.1016/j.bmc.2004.03.014
  • [24]Satyanarayana M, Tiwari P, Tripathi BK, Srivastava AK, Pratap R (2004). Synthesis and antihyperglycemic activity of chalcone based arlyoxypropanolamines. Bioorganic and Medicinal Chemistry; 12: 883-889.
  • [25]Wu J, Wang X, Yi Y, Lee K (2003). Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus desmos. Bioorganic&Medicinal Chemistry Letters; 13: 1813-1815.
  • [26]Fayed TA, Awad MK (2004). Dual emission of chalcone-analogue dyes emitting in the red region. Chemical Physics; 303: 317-326. https://doi.org/10.1016/j.chemphys.2004.06.023
  • [27]Mukherjee S, Kumar V, Prasad AK, Raj HG, Bracke ME, Olsen CE, Jain SC, Parmar VS (2001). Synhetic and biological activity evaluation studies on novel 1,3-diarylpropenones. Bioorg. Med. Chem.; 9: 337-345. https://doi.org/10.1016/S0968-0896(00)00249-2
  • [28]Hu Z, Liu J, Dong Z, Guo L, Wang D, Zeng P (2004). Synthesis of chalcones catalysed by SOCI2/EtOH. Journal of Chemıcal Research; 158-159.
  • [29]Rida SM, Soliman FS, Badawy ES (1986). Novel benzimidazoles with potential antimicrobial and antineoplastic activities. Pharmazie.;41(8): 563-5.
  • [30]Wigerinck P, Van Aerschot A, Janssen G, Claes P, Balzarini J, De Clercq E, Herdewijn P (1990). Synthesis and antiviral activity of 3'-heterocyclic substituted 3'-deoxythymidines. J. Med. Chem.; 1990 Feb; 33(2): 868-73.
  • [31]Bandyopadhyay D, Mukherjee S, Granados JC, Short JD, Banik BK (2012). Ultrasound-assisted bismuth nitrate-induced green synthesis of novel pyrrole derivatives and their biological evaluation as anticancer agents. Eur J Med Chem.; 2012 Apr; 50: 209-215. https://doi.org/10.1016/j.ejmech.2012.01.055.
  • [32]Geng Y, Wang X, Yang L, Sun H, Wang Y, Zhao Y, She R, Wang MX, Wang DX, Tang J (2015). Antitumor activity of a 5-hydroxy-1H-pyrrol-2-(5H)-one-based synthetic small molecule in vitro and in vivo. PLoS One.; 2015 Jun 4; 10(6): e0128928. https://doi.org/10.1371/journal.pone.0128928
  • [33]Kumar D, Kumar NM, Akamatsu K, Kusaka E, Harada H, Ito T (2010). Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorganic&Medicinal Chemistry Letters; 3916-3919. https://doi.org/10.1016/j.bmcl.2010.05.016
  • [34]Rizvi SUF, Siddiqui HL, Johns M, Detorio M, Schinazi RF (2012). Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Med. Chem. Res.; 21: 3741-9.
  • [35]Maronpot RR (2015). Toxicological assessment of ashitaba chalcone. Food and Chemical Toxicology; 77: 111-119. https://doi.org/10.1016/j.fct.2014.12.021
  • [36]Akkurt D (2014). Mutagenic activities of benzoxazole derivative 12 compounds on Salmonella typhimurium TA98, TA100. Master Thesis, Hacettepe University, Institute of Science, Department of Biology.
  • [37]Yüzbaşıoğlu D, Zengin N, Ünal F (2014). Food preservatives and genotoxicity tests. Food; 39 (3): 179-186.
  • [38]Akbaşlar D (2018). Synthesis of 1,2,3,4-Tetrasubstituted pyrrole compounds in lactic acid media by one pot-three component method: heteroaril derivatives of these molecules and ınvestigation antimicrobial activities of these molecules. PhD Thesis, Cukurova University, Instıtute of Natural and Applied Sciences, Department of Chemistry.
  • [39]Evans HJ (1984). Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. Handbook of mutagenicity test procedures. In: Kilbey BJ, Legator M, Nichols W and Ramel C (Eds.), Second edition, Elsevier Science Publishers, BV, pp. 405-427.
  • [40]Rencüzoğulları E, Topaktaş M (1991). The relationship between quantities of bromodeoxyuridine and human peripheral blood with determination of the best differential staining of sister chromatids using chromosome medium-B. Fen ve Mühendislik Bilimleri Dergisi; 5(3): 19-24.
  • [41]Mace ML JR, Daskal Y, Wray W (1978). Scanning electron microscopy of chromosome aberrations. Mutation Res.; 52: 199-206. https://doi.org/10.1016/0027-5107(78)90141-0
  • [42]Rothfuss A, Schutz P, Bochum S, Volm T, Elberhard E, Kreinberg R, Vogel V, Speit G (2000). Induced micronucleus frequencies in peripheral lymphocytes as a screening test for carries of a BRCA1 mutation in Breast cancer families. Cancer Res.; 60: 390-394.
  • [43]Maron D, Ames BN (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects; 113, (3-4), 173-215, ISSN 0165-1161.
  • [44]Ames BN, McCann J, Yamasaki E (1975). Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res.; 31: 347-364.
  • [45]Ord MJ, Herbert A, Mattocks AR (1985). The ability of bifunctional and monofunctional pyrrole compounds to induce Sister-Chromatid Exchange (SCE) in human lymphocytes and mutations in Salmonella typhimurium. Mutation Research; 149: 485-493. https://doi.org/10.1016/0027-5107(85)90167-8
  • [46]Skoutelis C, Antonopoulou M, Konstantinou I, Vlastos D, Papadaki M (2017). Photodegradation of 2-Chloropyridine in aqueous solution: Reaction pathways and genotoxicity of intermediate products. Journal of Hazardous Materials.; 753-7635. https://doi.org/10.1016/j.jhazmat.2016.09.058.
  • [47]Limoli CL, Giedzinski E (2003). Induction of chromosomal ınstability by chronic oxidative stress. Elsevier; 339-346. https://doi.org/10.1016/S1476-5586(03)80027-1
  • [48]Cooke MS, Evans MD, Dizdaroğlu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB Journal.; 0892-6638/03/0017-1195. https://doi.org/10.1096/fj.02-0752rev.
  • [49]Barzilai A, Yamamoto K-I (2004). DNA damage responses to oxidative stress. Elsevier, DNA Repair 3: 1109-1115. https://doi.org/10.1016/j.dnarep.2004.03.002.
  • [50]Salmon TB, Evert BA, Song B, Doetsch PW (2004). Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. 3712-3723 Nucleic Acids Research, 2004, Vol. 32, No. 12. https://doi.org/10.1093/nar/gkh696
  • [51]Gonzalez-Hunt CP, Wadhwa M, Sanders LH (2018). DNA damage by oxidative stress: Measurement strategies for two genomes. Current Opinion in Toxicology; 7: 87-94. https://doi.org/10.1016/j.cotox.2017.11.001.
  • [52]Diaz-Perez S, Kane N, Kurmis AA, Yang F, Kummer NT, Dervan PB, Nickols NG (2018). Interference with DNA repair after ionizing radiation by a pyrrole-imidazole polyamide. Research Artıcle. Plos One; 13(5): e0196803. https://doi.org/10.1371/journal.pone.0196803
  • [53]Wurtz NR, Dervan PB (2000). Sequence specific alkylation of DNA by hairpin Pyrrole-imidazole polyamide conjugates. Chemistry&Biology; 7: 153-161. https://doi.org/10.1016/S1074-5521(00)00085-5
  • [54]Baliga R, Baird EE, Herman DM, Melander C, Dervan PB, Crothers DM (2001). Kinetic consequences of covalent linkage of DNA binding polyamides. Biochemistry; 40: 3-8. https://doi.org/10.1021/bi0022339.
  • [55]Janssen BMG, Van Ommeren SPFI, Merkx M (2015). Efficient synthesis of peptide and protein functionalized pyrrole-imidazole polyamides using native chemical ligation. Int. J. Mol. Sci.; 16: 12631-12647. https://doi.org/10.3390/ijms160612631
  • [56]Zhao R, Guan LL, Oreski B, Lown JW (1998). Synthesis, topoisomerase I inhibitory activity and in vitro cytotoxicity of camptothecin derivatives bearing five-membered heterocycle containing 10-substituents. Anticancer Drug Des.; 13(2): 145-57.
  • [57]Montaner B, Castillo-Avila W, Martinell M, Öllinger R, Aymami J, Giralt E, Perez-Tomas R (2005). DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicological Sciences; 85: 870-879. https://doi.org/10.1093/toxsci/kfi149
  • [58]WO/2006/092599 (08.09.2006) (International Application Number: PCT/GB2006/000742 International Filing Date: 02.03.2006) (https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2006092599&tab=PCTBIBLIO).
  • [59]http://eprints.lincoln.ac.uk/32123/.
  • [60]Özdemir A, Altıntop MD, Sever B, Gençer HK, Kapkaç HA, Atlı Ö, Baysal M (2017). A new series of pyrrole-based chalcones: Synthesis and evaluation of antimicrobial activity, cytotoxicity and genotoxicity. Molecules; 22(12). https://doi.org/10.3390/molecules22122112
  • [61]Ovonramwen OB, Owolabi BJ, Oviawe AP (2019). Recent advances in chalcones: Synthesis, transformation and pharmacological activities. Asian Journal of Chemical Sciences; 1-16. https://doi.org/10.9734/ajocs/2019/v6i318996.
  • [62]Budhiraja A, Kadian K, Kaur M, Aggarwal V, Garg A, Sapra S, Nepali K, Suri OP, Dhar KL (2011). Synthesis and biological evaluation of naphthalene, furan and pyrrole based chalcones as cytotoxic and antimicrobial agents. Med Chem Res; 21 (9): 2133–2140. https://doi.org/10.1007/s00044-011-9733-y.
There are 62 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Rumeysa Meşe

Hasan Basri İla This is me 0000-0002-3221-8587

Project Number FYL-2018-10557
Publication Date January 30, 2022
Published in Issue Year 2022 Volume: 1 Issue: 1

Cite

APA Meşe, R., & İla, H. B. (2022). In vitro Cytogenetic Analysis in Human Cultured Blood Lymphocytes of Newly Synthesızed Two Different Benzoic Acid Derivatives [(4-(3-acetyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid) and (4-(3-cinamoyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid)]. Cukurova University Journal of Natural and Applied Sciences, 1(1), 6-20.
AMA Meşe R, İla HB. In vitro Cytogenetic Analysis in Human Cultured Blood Lymphocytes of Newly Synthesızed Two Different Benzoic Acid Derivatives [(4-(3-acetyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid) and (4-(3-cinamoyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid)]. CUNAS. January 2022;1(1):6-20.
Chicago Meşe, Rumeysa, and Hasan Basri İla. “In Vitro Cytogenetic Analysis in Human Cultured Blood Lymphocytes of Newly Synthesızed Two Different Benzoic Acid Derivatives [(4-(3-Acetyl-2-Methyl-4-Phenyl-1H-Pyrrol-1-Yl) Benzoic Acid) and (4-(3-Cinamoyl-2-Methyl-4-Phenyl-1H-Pyrrol-1-Yl) Benzoic Acid)]”. Cukurova University Journal of Natural and Applied Sciences 1, no. 1 (January 2022): 6-20.
EndNote Meşe R, İla HB (January 1, 2022) In vitro Cytogenetic Analysis in Human Cultured Blood Lymphocytes of Newly Synthesızed Two Different Benzoic Acid Derivatives [(4-(3-acetyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid) and (4-(3-cinamoyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid)]. Cukurova University Journal of Natural and Applied Sciences 1 1 6–20.
IEEE R. Meşe and H. B. İla, “In vitro Cytogenetic Analysis in Human Cultured Blood Lymphocytes of Newly Synthesızed Two Different Benzoic Acid Derivatives [(4-(3-acetyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid) and (4-(3-cinamoyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid)]”, CUNAS, vol. 1, no. 1, pp. 6–20, 2022.
ISNAD Meşe, Rumeysa - İla, Hasan Basri. “In Vitro Cytogenetic Analysis in Human Cultured Blood Lymphocytes of Newly Synthesızed Two Different Benzoic Acid Derivatives [(4-(3-Acetyl-2-Methyl-4-Phenyl-1H-Pyrrol-1-Yl) Benzoic Acid) and (4-(3-Cinamoyl-2-Methyl-4-Phenyl-1H-Pyrrol-1-Yl) Benzoic Acid)]”. Cukurova University Journal of Natural and Applied Sciences 1/1 (January 2022), 6-20.
JAMA Meşe R, İla HB. In vitro Cytogenetic Analysis in Human Cultured Blood Lymphocytes of Newly Synthesızed Two Different Benzoic Acid Derivatives [(4-(3-acetyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid) and (4-(3-cinamoyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid)]. CUNAS. 2022;1:6–20.
MLA Meşe, Rumeysa and Hasan Basri İla. “In Vitro Cytogenetic Analysis in Human Cultured Blood Lymphocytes of Newly Synthesızed Two Different Benzoic Acid Derivatives [(4-(3-Acetyl-2-Methyl-4-Phenyl-1H-Pyrrol-1-Yl) Benzoic Acid) and (4-(3-Cinamoyl-2-Methyl-4-Phenyl-1H-Pyrrol-1-Yl) Benzoic Acid)]”. Cukurova University Journal of Natural and Applied Sciences, vol. 1, no. 1, 2022, pp. 6-20.
Vancouver Meşe R, İla HB. In vitro Cytogenetic Analysis in Human Cultured Blood Lymphocytes of Newly Synthesızed Two Different Benzoic Acid Derivatives [(4-(3-acetyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid) and (4-(3-cinamoyl-2-methyl-4-phenyl-1H-pyrrol-1-yl) Benzoic Acid)]. CUNAS. 2022;1(1):6-20.