Review
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 2, 108 - 116, 25.12.2023
https://doi.org/10.38093/cupmap.1365128

Abstract

References

  • References
  • 1. Goswami, N., Chatterjee, S., (2014). Assessment of free radical scavenging potential and oxidative DNA damage preventive activity of Trachyspermum ammi L. (carom) and Foeniculum vulgare Mill.(fennel) seed extracts. Bio Medical research international, 2014.
  • 2. Venugopal, R., Liu, R.H., (2012). Phytochemicals in diets for breast cancer prevention: The importance of resveratrol and ursolic acid. Food Science and Human Wellness, 1(1),1-3.
  • 3. Mukherjee, P.K., Maity, N., Nema, N.K., Sarkar, B.K., (2011). Bioactive compounds from natural resources against skin aging. Phytomedicine, 19(1), 64-73.
  • 4. Crozier, A., (2003). Methods in Polyphenol Analysis-Editors: C. Santos-Buelga and G. Williamson, 2003. Royal Society of Chemistry, Cambridge, ISBN 0-854-580-5, Phytochemistry, 6(64),1172-3.
  • 5. Mykhailenko, O., Kovalyov, V., Goryacha, O., Ivanauskas, L., Georgiyants, V., (2019). Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry 162, 56-89. DOI: 10.1016/j.phytochem.2019.02.004.
  • 6. Hosseini, S., Imenshahidi, M., Hosseinzadeh, H., Karimi, G., (2018). Effects of plant extracts and bioactive compounds on attenuation of bleomycin-induced pulmonary fibrosis. Biomed Pharmacotherapy, 107, 1454-65. DOI: 10.1016/j. biopha.2018.08.111.
  • 7. Mohd-Setapar, H.M., (2018). Natural ingredients in cosmetics from Malaysian plants: a review. Sains Malaysiana, 47(5), 951-9. DOI: 10.17576/jsm-2018-4705-10.
  • 8. Saucedo-Pompa, S., Torres-Castillo, J.A., Castro-López, C., Rojas, R., Sánchez-Alejo, E.J., Ngangyo-Heya, M., Martínez-Ávila, G.C., (2018). Moringa plants: Bioactive compounds and promising applications in food products. Food Research International, 111, 438-50.DOI: 10.1016/j.foodres.2018.05.062.
  • 9. Nandhini. R.B., Rahul, R.N., Thilaga, S., Rao, N.S., Ganesh, D., (2013). Molecular distinction of C× R hybrid (Coffea congensis× Coffea canephora) from morphologically resembling male parent using rbcL and matK gene sequences. South African Journal of Botany, 88, 334-40.
  • 10. Idham, Z., Nasir, H.M., Yunus, M.A., Lee, N.Y., Wong, L.P., Hassan, H., Setapar, S.H., (2017). Optimisation of supercritical CO 2 extraction of red colour from roselle (Hibiscus Sabdariffa Linn.) calyces. Chemical Engineering Transactions, 56, 871-6.
  • 11. Abuduwaili, A., Rozi, P., Mutailifu, P., Gao, Y., Nuerxiati, R., Aisa, H.A., Yili, A., (2019). Effects of different extraction techniques on physicochemical properties and biological activities of polysaccharides from Fritillaria pallidiflora Schrenk. Process Biochemistry, 83, 189-97. DOI:10.1016/j.procbio.2019.05. 020.
  • 12. Chemat. F., Abert-Vian, M., Fabiano-Tixierm A.S., Strubem J., Uhlenbrockm L., Gunjevicm, V., Cravotto, G., (2019). Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends in Analytical Chemestry, 118, 248-63. DOI: 10.1016/j.trac.2019.05.037.
  • 13. Perino, S., Chemat, F., (2019). Green process intensification techniques for bio-refinery. Current Opinion in Food Science, 25,8-13. DOI: 10.1016/j.cofs.2018.12.004.
  • 14. Barreira, J.C., Arraibi, A.A., Ferreira, I.C., (2019). Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends in Food Science Technology, 90, 76-87. DOI: 10.1016/j.tifs. 2019.05.014
  • 15. Andrade, M.A., Lima, V., Silva, A.S., Vilarinho, F., Castilho, M.C., Khwaldia, K., Ramos, F., (2019). Pomegranate and grape by-products and their active compounds: Are they a valuable source for food applications? Trends in Food Science and Technology, 86, 68-84. DOI: 10.1016/j.tifs.2019.02.010
  • 16. Handa, S.S., (2008). An overview of extraction techniques for medicinal and aromatic plants. Extraction technologies for medicinal and aromatic plants, 1, 21-40.
  • 17. Methods Optimization in Accelerated Solvent Extraction in Technical note (2013) 208, 1-4.
  • 18. Mediani, F. A., Khatib, A., Tan, C. P., (2013). Cosmos Caudatus as a potential source of polyphenolic compounds: Optimisation of oven drying conditions and characterisation of its functional properties. Molecules, 18, 10452-10464.
  • 19. Hamrouni-Sellami, I., Rahali, F.Z., Rebey, I.B., Bourgou, S., Limam, F., Marzouk, B., (2013). Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food and Bioprocess Technology, 6(3), 806-17.
  • 20. Kaufmann, B., Christen, P., (2002). Recent extraction techniques for natural products: microwave‐assisted extraction and pressurised solvent extraction. Phytochemical Analysis: An International Journal of Plant Chemical and Biochem Technology, 13(2), 105-13.
  • 21. Abascal, K., Ganora, L., Yarnell, E., (2005). The effect of freeze‐drying and its implications for botanical medicine: a review. Phytotherapy Research: An International Journal of Devoted to Pharmacolgy andToxicological Evaluation of Natural Product Derivatives, 19(8), 655-60.
  • 22. Yoshimatsu, K., Shimomura, K., (1992). Transformation of opium poppy (Papaver somniferum L.) with Agrobacterium rhizogenes MAFF 03-01724. Plant cell reports, 11(3), 132-6.
  • 23. Waters Oasis sample extraction products, Pharmaceutical applications notebook, Waters Corporation, Massachussetts, 2001.
  • 24. Yoshimatsu, K., Kiuchi, F., Shimomura, K., Makino, Y., (2005). A rapid and reliable solid-phase extraction method for high-performance liquid chromatographic analysis of opium alkaloids from Papaver plants. Chemical and pharmaceutical bulletin, 53(11), 1446-50.
  • 25. Anonymous. The Indian Pharmacopoeia. Govt. of India publication, New Delhi. 1966, 947-950.
  • 26. Rathi, B.S., Bodhankar, S.L., Baheti, A.M., (2006). Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats.
  • 27. Citadin, D.G., Claumann, C.A., Zibetti, A.W., Marangoni, A., Bolzan, A., Machado, R.A., (2016). Supercritical fluid extraction of Drimys angustifolia Miers: Experimental data and identification of the dynamic behavior of extraction curves using neural networks based on wavelets. The Journal of Supercritical Fluids 112, 81-8. DOI: 10.1016/j.supflu.2016.02.007.
  • 28. Li, X., Arzhantsev, S., Kauffman, J.F., Spencer, J.A., (2011). Detection of diethylene glycol adulteration in propylene glycol—Method validation through a multi-instrument collaborative study. Journal of pharmaceutical and biomedical analysis, 54(5), 1001-6.
  • 29. Patil, D.M., Akamanchi, K. G., (2017). Microwave Assisted Process Intensification and Kinetic Modelling: Extraction of Camptothecin from Nothapodytes nimmoniana Plant. Industrial Crops and Products, 98, 60–67. DOI: 10.1016/j.indcrop.2017.01.023.
  • 30. Gullon, B., Muniz-Mouro, A., Lu-Chau, T.A., Moreira, M.T., Lema, J.M., Eibes, G., (2019). Green approaches for the extraction of antioxidants from eucalyptus leaves. Industrial Crops and Product, 138, 111473.
  • 31. Odabas, H. I., Koca, I., (2016). Application of Response Surface Methodology for Optimizing the Recovery of Phenolic Compounds from Hazelnut Skin Using Different Extraction Methods. Industrial Crops and Products, 91, 114–124. DOI: 10.1016/j. indcrop.2016.05.033.
  • 32. Rodsamran, P., Sothornvit, R., (2019). Extraction of phenolic compounds from lime peels waste using ultrasonic-assisted and microwave-assisted extractions. Food bioscience, 28, 66-73. DOI: 10.1016/j.fbio.2019.01.017.
  • 33. Puttarak, P., Panichayupakaranant, P., (2013). A new method for preparing pentacyclic triterpene rich Centella asiatica extracts. Natural Product and Research, 27(7), 684-6.
  • 34. Kumoro, A.C., Hartati, I., (2015). Microwave assisted extraction of dioscorin from Gadung (Dioscorea hispida Dennst) tuber flour. Procedia Chemistry, 14, 47-55.
  • 35. Pudziuvelyte, L., Jakštas, V., Ivanauskas, L., Laukevičienė, A., Ibe, C.F., Kursvietiene, L., Bernatoniene, J., (2018). Different extraction methods for phenolic and volatile compounds recovery from Elsholtzia ciliata fresh and dried herbal materials. Industrial Crops and Products, 120, 286-94.DOI: 10.1016/ j.indcrop.2018.04.069.
  • 36. Ebrahim, N., Kershi, M., Butnariub, M., (2014). Antioxidant activity and anthocyanin content in flower of Mirabilis jalab L. collected from Yemen. World Applied Science Journal, 29, 247-51.
  • 37. Dhanani, T., Shah, S., Gajbhiye, N.A., Kumar, S., (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry, 10, S1193-9.
  • 38. Odabaş, H.İ., Koca, I., (2016). Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Industrial Crops and Products, 91, 114-24. DOI: 10.1016/j. indcrop.2016.05.033.
  • 39. Kozioł, E., Luca, S.V., Marcourt, L., Nour, M., Hnawia, E., Jakubowicz-Gil, J., Paduch, R., Mroczek, T., Wolfender, J.L., Skalicka-Woźniak, K., (2019). Efficient extraction and isolation of skimmianine from New Caledonian plant Medicosma leratii and evaluation of its effects on apoptosis, necrosis, and autophagy. Phytochemistry Letters, 30, 224-30.
  • 40. Rodsamran, P., Sothornvit, R., (2019). Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food bioscience, 28, 66-73.
  • 41. Luthria, D., Vinjamoori, D., Noel, K., Ezzell, J., (2019). Accelerated solvent extraction in Oil extraction and analysis. pp. 25-38, AOCS Publishing.
  • 42. Wang, W., Meng, B., Lu, X., Liu, Y., Tao, S., (2007). Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Analytica chimica actarium, 602(2), 211-22. https://doi.org/10.1016/j.aca.2007.09.023
  • 43. Alara, O.R., Abdurahman, N.H., Ukaegbu, C.I., (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research and Medicinal Aromatic Plants, 11, 12-7. https://doi.org/10.1016/j.jarmap.2018.07.003
  • 44. Hu, B., Xi, X., Li, H., Qin, Y., Li, C., Zhang, Z., Liu, Y., Zhang, Q., Liu, A., Liu, S., Luo, Q., (2021). A comparison of extraction yield, quality and thermal properties from Sapindus mukorossi seed oil between microwave assisted extraction and Soxhlet extraction. Industrial Crops and Products, 161, 113185. https://doi.org/10.1016/j.indcrop.2020.113185
  • 45. Chuang, Y.H., Zhang, Y., Zhang, W., Boyd, S.A., Li, H., (2015). Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. Journal of Chromatography A, 1404,1-9. https://doi.org/10.1016/j.chroma.2015.05.022
  • 46. Carnahan, A.M., Spalinger, D.E., Kennish, J.M., Collins, W.B., (2013). Extraction and analysis of plant alkanes and long‐chain alcohols using accelerated solvent extraction (ASE). Wildlife Society Bulletin, 37(1), 220-5. https://doi.org/10.1002/wsb.222
  • 47. Kothari, V., Gupta, A., Naraniwal, M., (2012). Comparative study of various methods for extraction of antioxidant and antibacterial compounds from plant seeds. Journal of Natural Remedies, 12, 162-173.
  • 48. Şahin, S., Bilgin, M., Dramur, M.U., (2011). Investigation of oleuropein content in olive leaf extract obtained by supercritical fluid extraction and soxhlet methods. Separation Science and Technology, 46(11), 1829-37. https://doi.org/10.1080/01496395.2011.573519
  • 49. Gallo-Molina, A.C., Castro-Vargas, H.I., Garzón-Méndez, W.F., Ramírez, J.A., Monroy, Z.J., King, J.W., Parada-Alfonso, F., (2019). Extraction, isolation and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. The Journal of Supercritical Fluids, 146, 208-16. https://doi.org/10.1016/j.supflu.2019.01.020

A COMPARATIVE STUDY ON CONVENTIONAL AND ADVANCE TECHNIQUES FOR PLANT EXTRACTION AND EFFECT ON THE EXTRACT YIELD: REVIEW

Year 2023, Volume: 6 Issue: 2, 108 - 116, 25.12.2023
https://doi.org/10.38093/cupmap.1365128

Abstract

Medicinal plants are bringing so much attention from the researchers, nutritionists and consumers due to their potent nutritional value and ethno-medicinal properties. Extraction plays a critical role to study the medicinal properties of plants, herbs and spices. The present review was conducted to elaborate the advance method of extraction with small use of solvent and better yields of extract in short time duration. Nowadays purity is a major concern for the researcher to evaluate effective analysis. To obtain the phytochemicals from the plant majorly depends on the extraction procedure. Inappropriate extraction may cause loss in quantitative phyto-components. Advance methods like MAE, ASE, SPE and UAE are studied on compare with conventional methods on the basis of yield, efficacy and purity of extracts. In this review article, commonly used extraction techniques discussed based on their strength to obtain high yields and better purity of extract to assess the economical attainability of the methods and further used for chemical, biological and pharmaceutical analysis.

References

  • References
  • 1. Goswami, N., Chatterjee, S., (2014). Assessment of free radical scavenging potential and oxidative DNA damage preventive activity of Trachyspermum ammi L. (carom) and Foeniculum vulgare Mill.(fennel) seed extracts. Bio Medical research international, 2014.
  • 2. Venugopal, R., Liu, R.H., (2012). Phytochemicals in diets for breast cancer prevention: The importance of resveratrol and ursolic acid. Food Science and Human Wellness, 1(1),1-3.
  • 3. Mukherjee, P.K., Maity, N., Nema, N.K., Sarkar, B.K., (2011). Bioactive compounds from natural resources against skin aging. Phytomedicine, 19(1), 64-73.
  • 4. Crozier, A., (2003). Methods in Polyphenol Analysis-Editors: C. Santos-Buelga and G. Williamson, 2003. Royal Society of Chemistry, Cambridge, ISBN 0-854-580-5, Phytochemistry, 6(64),1172-3.
  • 5. Mykhailenko, O., Kovalyov, V., Goryacha, O., Ivanauskas, L., Georgiyants, V., (2019). Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry 162, 56-89. DOI: 10.1016/j.phytochem.2019.02.004.
  • 6. Hosseini, S., Imenshahidi, M., Hosseinzadeh, H., Karimi, G., (2018). Effects of plant extracts and bioactive compounds on attenuation of bleomycin-induced pulmonary fibrosis. Biomed Pharmacotherapy, 107, 1454-65. DOI: 10.1016/j. biopha.2018.08.111.
  • 7. Mohd-Setapar, H.M., (2018). Natural ingredients in cosmetics from Malaysian plants: a review. Sains Malaysiana, 47(5), 951-9. DOI: 10.17576/jsm-2018-4705-10.
  • 8. Saucedo-Pompa, S., Torres-Castillo, J.A., Castro-López, C., Rojas, R., Sánchez-Alejo, E.J., Ngangyo-Heya, M., Martínez-Ávila, G.C., (2018). Moringa plants: Bioactive compounds and promising applications in food products. Food Research International, 111, 438-50.DOI: 10.1016/j.foodres.2018.05.062.
  • 9. Nandhini. R.B., Rahul, R.N., Thilaga, S., Rao, N.S., Ganesh, D., (2013). Molecular distinction of C× R hybrid (Coffea congensis× Coffea canephora) from morphologically resembling male parent using rbcL and matK gene sequences. South African Journal of Botany, 88, 334-40.
  • 10. Idham, Z., Nasir, H.M., Yunus, M.A., Lee, N.Y., Wong, L.P., Hassan, H., Setapar, S.H., (2017). Optimisation of supercritical CO 2 extraction of red colour from roselle (Hibiscus Sabdariffa Linn.) calyces. Chemical Engineering Transactions, 56, 871-6.
  • 11. Abuduwaili, A., Rozi, P., Mutailifu, P., Gao, Y., Nuerxiati, R., Aisa, H.A., Yili, A., (2019). Effects of different extraction techniques on physicochemical properties and biological activities of polysaccharides from Fritillaria pallidiflora Schrenk. Process Biochemistry, 83, 189-97. DOI:10.1016/j.procbio.2019.05. 020.
  • 12. Chemat. F., Abert-Vian, M., Fabiano-Tixierm A.S., Strubem J., Uhlenbrockm L., Gunjevicm, V., Cravotto, G., (2019). Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends in Analytical Chemestry, 118, 248-63. DOI: 10.1016/j.trac.2019.05.037.
  • 13. Perino, S., Chemat, F., (2019). Green process intensification techniques for bio-refinery. Current Opinion in Food Science, 25,8-13. DOI: 10.1016/j.cofs.2018.12.004.
  • 14. Barreira, J.C., Arraibi, A.A., Ferreira, I.C., (2019). Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends in Food Science Technology, 90, 76-87. DOI: 10.1016/j.tifs. 2019.05.014
  • 15. Andrade, M.A., Lima, V., Silva, A.S., Vilarinho, F., Castilho, M.C., Khwaldia, K., Ramos, F., (2019). Pomegranate and grape by-products and their active compounds: Are they a valuable source for food applications? Trends in Food Science and Technology, 86, 68-84. DOI: 10.1016/j.tifs.2019.02.010
  • 16. Handa, S.S., (2008). An overview of extraction techniques for medicinal and aromatic plants. Extraction technologies for medicinal and aromatic plants, 1, 21-40.
  • 17. Methods Optimization in Accelerated Solvent Extraction in Technical note (2013) 208, 1-4.
  • 18. Mediani, F. A., Khatib, A., Tan, C. P., (2013). Cosmos Caudatus as a potential source of polyphenolic compounds: Optimisation of oven drying conditions and characterisation of its functional properties. Molecules, 18, 10452-10464.
  • 19. Hamrouni-Sellami, I., Rahali, F.Z., Rebey, I.B., Bourgou, S., Limam, F., Marzouk, B., (2013). Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food and Bioprocess Technology, 6(3), 806-17.
  • 20. Kaufmann, B., Christen, P., (2002). Recent extraction techniques for natural products: microwave‐assisted extraction and pressurised solvent extraction. Phytochemical Analysis: An International Journal of Plant Chemical and Biochem Technology, 13(2), 105-13.
  • 21. Abascal, K., Ganora, L., Yarnell, E., (2005). The effect of freeze‐drying and its implications for botanical medicine: a review. Phytotherapy Research: An International Journal of Devoted to Pharmacolgy andToxicological Evaluation of Natural Product Derivatives, 19(8), 655-60.
  • 22. Yoshimatsu, K., Shimomura, K., (1992). Transformation of opium poppy (Papaver somniferum L.) with Agrobacterium rhizogenes MAFF 03-01724. Plant cell reports, 11(3), 132-6.
  • 23. Waters Oasis sample extraction products, Pharmaceutical applications notebook, Waters Corporation, Massachussetts, 2001.
  • 24. Yoshimatsu, K., Kiuchi, F., Shimomura, K., Makino, Y., (2005). A rapid and reliable solid-phase extraction method for high-performance liquid chromatographic analysis of opium alkaloids from Papaver plants. Chemical and pharmaceutical bulletin, 53(11), 1446-50.
  • 25. Anonymous. The Indian Pharmacopoeia. Govt. of India publication, New Delhi. 1966, 947-950.
  • 26. Rathi, B.S., Bodhankar, S.L., Baheti, A.M., (2006). Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats.
  • 27. Citadin, D.G., Claumann, C.A., Zibetti, A.W., Marangoni, A., Bolzan, A., Machado, R.A., (2016). Supercritical fluid extraction of Drimys angustifolia Miers: Experimental data and identification of the dynamic behavior of extraction curves using neural networks based on wavelets. The Journal of Supercritical Fluids 112, 81-8. DOI: 10.1016/j.supflu.2016.02.007.
  • 28. Li, X., Arzhantsev, S., Kauffman, J.F., Spencer, J.A., (2011). Detection of diethylene glycol adulteration in propylene glycol—Method validation through a multi-instrument collaborative study. Journal of pharmaceutical and biomedical analysis, 54(5), 1001-6.
  • 29. Patil, D.M., Akamanchi, K. G., (2017). Microwave Assisted Process Intensification and Kinetic Modelling: Extraction of Camptothecin from Nothapodytes nimmoniana Plant. Industrial Crops and Products, 98, 60–67. DOI: 10.1016/j.indcrop.2017.01.023.
  • 30. Gullon, B., Muniz-Mouro, A., Lu-Chau, T.A., Moreira, M.T., Lema, J.M., Eibes, G., (2019). Green approaches for the extraction of antioxidants from eucalyptus leaves. Industrial Crops and Product, 138, 111473.
  • 31. Odabas, H. I., Koca, I., (2016). Application of Response Surface Methodology for Optimizing the Recovery of Phenolic Compounds from Hazelnut Skin Using Different Extraction Methods. Industrial Crops and Products, 91, 114–124. DOI: 10.1016/j. indcrop.2016.05.033.
  • 32. Rodsamran, P., Sothornvit, R., (2019). Extraction of phenolic compounds from lime peels waste using ultrasonic-assisted and microwave-assisted extractions. Food bioscience, 28, 66-73. DOI: 10.1016/j.fbio.2019.01.017.
  • 33. Puttarak, P., Panichayupakaranant, P., (2013). A new method for preparing pentacyclic triterpene rich Centella asiatica extracts. Natural Product and Research, 27(7), 684-6.
  • 34. Kumoro, A.C., Hartati, I., (2015). Microwave assisted extraction of dioscorin from Gadung (Dioscorea hispida Dennst) tuber flour. Procedia Chemistry, 14, 47-55.
  • 35. Pudziuvelyte, L., Jakštas, V., Ivanauskas, L., Laukevičienė, A., Ibe, C.F., Kursvietiene, L., Bernatoniene, J., (2018). Different extraction methods for phenolic and volatile compounds recovery from Elsholtzia ciliata fresh and dried herbal materials. Industrial Crops and Products, 120, 286-94.DOI: 10.1016/ j.indcrop.2018.04.069.
  • 36. Ebrahim, N., Kershi, M., Butnariub, M., (2014). Antioxidant activity and anthocyanin content in flower of Mirabilis jalab L. collected from Yemen. World Applied Science Journal, 29, 247-51.
  • 37. Dhanani, T., Shah, S., Gajbhiye, N.A., Kumar, S., (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry, 10, S1193-9.
  • 38. Odabaş, H.İ., Koca, I., (2016). Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Industrial Crops and Products, 91, 114-24. DOI: 10.1016/j. indcrop.2016.05.033.
  • 39. Kozioł, E., Luca, S.V., Marcourt, L., Nour, M., Hnawia, E., Jakubowicz-Gil, J., Paduch, R., Mroczek, T., Wolfender, J.L., Skalicka-Woźniak, K., (2019). Efficient extraction and isolation of skimmianine from New Caledonian plant Medicosma leratii and evaluation of its effects on apoptosis, necrosis, and autophagy. Phytochemistry Letters, 30, 224-30.
  • 40. Rodsamran, P., Sothornvit, R., (2019). Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food bioscience, 28, 66-73.
  • 41. Luthria, D., Vinjamoori, D., Noel, K., Ezzell, J., (2019). Accelerated solvent extraction in Oil extraction and analysis. pp. 25-38, AOCS Publishing.
  • 42. Wang, W., Meng, B., Lu, X., Liu, Y., Tao, S., (2007). Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Analytica chimica actarium, 602(2), 211-22. https://doi.org/10.1016/j.aca.2007.09.023
  • 43. Alara, O.R., Abdurahman, N.H., Ukaegbu, C.I., (2018). Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research and Medicinal Aromatic Plants, 11, 12-7. https://doi.org/10.1016/j.jarmap.2018.07.003
  • 44. Hu, B., Xi, X., Li, H., Qin, Y., Li, C., Zhang, Z., Liu, Y., Zhang, Q., Liu, A., Liu, S., Luo, Q., (2021). A comparison of extraction yield, quality and thermal properties from Sapindus mukorossi seed oil between microwave assisted extraction and Soxhlet extraction. Industrial Crops and Products, 161, 113185. https://doi.org/10.1016/j.indcrop.2020.113185
  • 45. Chuang, Y.H., Zhang, Y., Zhang, W., Boyd, S.A., Li, H., (2015). Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. Journal of Chromatography A, 1404,1-9. https://doi.org/10.1016/j.chroma.2015.05.022
  • 46. Carnahan, A.M., Spalinger, D.E., Kennish, J.M., Collins, W.B., (2013). Extraction and analysis of plant alkanes and long‐chain alcohols using accelerated solvent extraction (ASE). Wildlife Society Bulletin, 37(1), 220-5. https://doi.org/10.1002/wsb.222
  • 47. Kothari, V., Gupta, A., Naraniwal, M., (2012). Comparative study of various methods for extraction of antioxidant and antibacterial compounds from plant seeds. Journal of Natural Remedies, 12, 162-173.
  • 48. Şahin, S., Bilgin, M., Dramur, M.U., (2011). Investigation of oleuropein content in olive leaf extract obtained by supercritical fluid extraction and soxhlet methods. Separation Science and Technology, 46(11), 1829-37. https://doi.org/10.1080/01496395.2011.573519
  • 49. Gallo-Molina, A.C., Castro-Vargas, H.I., Garzón-Méndez, W.F., Ramírez, J.A., Monroy, Z.J., King, J.W., Parada-Alfonso, F., (2019). Extraction, isolation and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. The Journal of Supercritical Fluids, 146, 208-16. https://doi.org/10.1016/j.supflu.2019.01.020
There are 50 citations in total.

Details

Primary Language English
Subjects Botany (Other)
Journal Section Review Articles
Authors

Nısha Mehra 0000-0001-6802-9721

Early Pub Date October 30, 2023
Publication Date December 25, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Mehra, N. (2023). A COMPARATIVE STUDY ON CONVENTIONAL AND ADVANCE TECHNIQUES FOR PLANT EXTRACTION AND EFFECT ON THE EXTRACT YIELD: REVIEW. Current Perspectives on Medicinal and Aromatic Plants, 6(2), 108-116. https://doi.org/10.38093/cupmap.1365128

-------------------------------------------------------------------------------------------------------------------------------

csm_neu_ezb_logo_670e8bf80b.jpg  Google_Scholar_logo_2015.PNG index_copernicus.jpg wclogo_block.png  logo.png  

Akademia_sosyal_bilimler_indeksi_logosu.gif  wide.png424-4243430_reviewers-for-these-journals-can-track-verify-and.png  orcid_logo.png?version=1&modificationDate=1473862307894&api=v2  1*mvsP194Golg0Dmo2rjJ-oQ.jpeg  aji.png citefactor-e1553074491226.png    logo1.jpg  semantci.png

-------------------------------------------------------------------------------------------------------------------------

88x31.png CUPMAP Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

-----------------------------------------------------------------------------------------------------------------------------------------

Open_Access_PLoS.svg

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or  use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.