Research Article
BibTex RIS Cite

Farklı Seyreltik Sodyum Hidroksit Ön İşlem Metotlarının Kargı Kamışı (Arundo donax L.) Bitkisinden Fermente Olabilir Şeker ve Etanol Üretimine Etkileri

Year 2021, Volume: 36 Issue: 1, 81 - 92, 30.06.2021

Abstract

Bu çalışma 5 farklı seyreltik sodyum hidroksit (NAOH) ön işlem metodunun (%1.0, 1.5, 2.0, 2.5 ve 3.0) kargı kamışı bitkisinden biyoetanol üretimine etkilerini araştırmak amacıyla yürütülmüştür. Ön işlem metotları otoklav koşullarında 121 °C’de ve 30 dakika süreyle yürütülmüştür. Araştırmada en yüksek indirgen şeker verimi %2.5 NAOH ön işlem metodundan elde edilmesine karşın, yüksek katı veriminden dolayı en yüksek teoriksel etanol verimi %1.0 NAOH ön işlem metodundan elde edilmiştir. Bu sonuçlar, araştırmada test edilen ön işlem metotları içerisinde % 1.0 NAOH ön işlem metodunun kargı kamışı bitkisinden sürdürülebilir bir biyoetanol üretimi gerçekleştirmek için öncelikli olarak tercih edilebileceğini göstermektedir.

References

  • Aditiya, H.B., Mahlia, T.M.I., Chong, W.T., Nur, H., Sebayang, A.H. (2016) Second generation bioethanol production: A critical review. Renewable and sustainable energy reviews 66:631-653.
  • Aita, G.A., Salvi, D.A., Walker, M.S. (2011) Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresource Technology 102:4444-4448.
  • Barcelos, C.A., Maeda, R.N., Betancur, G.J.V., Pereira, N. (2013) The essentialness of delignification on enzymatic hydrolysis of sugar cane bagasse cellulignin for second generation ethanol production. Waste and Biomass Valorization 4:341-346.
  • Boose, A.B., Holt, J.S. (1999) Environmental effects on asexual reproduction in Arundo donax. Weed Research, 39:117–27.
  • Cao, W., Sun, C., Liu, R., Yin, R., Wu, X. (2012) Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology 111:215-221.
  • Chen, B.Y., Chen, S.W., Wang, H.T. (2012) Use of different alkaline pretreatments and enzyme models to improve low-cost cellulosic biomass conversion. Biomass and Bioenergy 39:182-191.
  • Chen, M., Xia, L., Xue, P. (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. International Biodeterioration & Biodegradation 59:85-89.
  • Cheng, Y.S., Zheng, Y., Yu, C.W., Dooley, T.M., Jenkins, B.M., Vander Gheynst, J.S. (2010) Evaluation of high solids alkaline pretreatment of rice straw. Applied biochemistry and biotechnology 162:1768-1784.
  • Choudhary, R., Umagiliyage, A.L., Liang, Y., Siddaramu, T., Haddock, J., Markevicius, G. (2012) Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass and Bioenergy 39:218-226.
  • Eliana, C., Jorge, R., Juan, P., Luis, R. (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118: 41-47.
  • Haq, F., Ali, H., Shuaib, M., Badshah, M., Hassan, S.W., Munis, M.F.H., Chaudhary, H.J. (2016) Recent progress in bioethanol production from lignocellulosic materials: A review. International Journal of Green Energy 13:1413-1441.
  • Haque, M.A., Barman, D.N., Kang, T.H., Kim, M.K., Kim, J., Kim, H., Yun, H.D. (2013) Effect of dilute alkali pretreatment on structural features and enhanced enzymatic hydrolysis of Miscanthus sinensis at boiling temperature with low residence time. Biosystems engineering 114:294-305.
  • Hendricks, A.T.W., Zeeman, G. (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100:10-18.
  • Jiang, D., Ge, X., Zhang, Q., Li, Y. (2016) Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production. Bioresource technology 216:60-68.
  • Jung, W., Savithri, D., Sharma-Shivappa, R., Kolar, P. (2020) Effect of sodium hydroxide pretreatment on lignin monomeric components of Miscanthus× giganteus and enzymatic hydrolysis. Waste and Biomass Valorization, 11:5891-5900.
  • Kärcher, M.A., Iqbal, Y., Lewandowski, I., Senn, T. (2015) Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment. Bioresource technology, 180, 360-364.
  • Kaur, K., Phutela, U.G. (2016) Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment. Renewable Energy 92:178-184.
  • Keshav, P.K., Banoth, C., Anthappagudem, A., Linga, V.R., Bhukya, B. (2018) Sequential acid and enzymatic saccharification of steam exploded cotton stalk and subsequent ethanol production using Scheffersomyces stipitis NCIM 3498. Industrial Crops and Products 125:462-467.
  • Khullar, E., Dien, B.S., Rausch, K.D., Tumbleson, M.E., Singh, V. (2013) Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Industrial crops and products 44:11-17.
  • Kuşvuran, A., Kuşvuran, Ş., Nazlı, R. İ., Tansı, V. (2019) Kargı Kamışı (Arundo donax L.)’nda Tuz Stresinin Morfolojik ve Fizyolojik Özelliklere Etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29:233-241.
  • Láinez, M., Ruiz, H.A., Castro-Luna, A.A., Martínez-Hernández, S. (2018) Release of simple sugars from lignocellulosic biomass of Agave salmiana leaves subject to sequential pretreatment and enzymatic saccharification. Biomass and bioenergy 118:133-140.
  • Lemons e Silva, C.F., Artigas Schirmer, M., Nobuyuki Maeda, R., Araújo Barcelos, C., Pereira, N., (2015) Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electronic Journal of Biotechnology 18:10-15.
  • Lemões, J.S., e Silva, C.F.L., Avila, S.P.F., Montero, C.R.S., e Silva, S.D.D.A., Samios, D., Peralba, M.D.C.R. (2018) Chemical pretreatment of Arundo donax L. for second-generation ethanol production. Electronic Journal of Biotechnology 31:67-74.
  • Menezes, E.G., do Carmo, J.R., Alves, J.G.L., Menezes, A.G., Guimarães, I.C., Queiroz, F., Pimenta, C.J. (2014) Optimization of alkaline pretreatment of coffee pulp for production of bioethanol. Biotechnology progress 30:451-462.
  • Michalska, K., Bizukojć, M., Ledakowicz, S. (2015) Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production. Biomass and Bioenergy 80: 213-221.
  • Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426–428.
  • Nazlı, R. İ. (2017) Akdeniz iklim koşullarında bazı çok yıllık buğdaygillerin (miskantus, dallı darı, kargı kamışı, yumrulu yem kanyaşı) enerji bitkisi olarak kullanım olanakları. Doktora Tezi. Çukurova Üniversitesi.
  • Nazli, R.I., Tansi, V., Öztürk, H.H., Kusvuran, A. (2018) Miscanthus, switchgrass, giant reed, and bulbous canary grass as potential bioenergy crops in a semi-arid Mediterranean environment. Industrial Crops and Products 125:9-23.
  • Nazli, R. İ. (2020) Evaluation of different sweet sorghum cultivars for bioethanol yield potential and bagasse combustion characteristics in a semiarid Mediterranean environment. Biomass and Bioenergy 139:105624.
  • Niemi, P., Pihlajaniemi, V., Rinne, M., Siika-aho, M. (2017) Production of sugars from grass silage after steam explosion or soaking in aqueous ammonia. Industrial Crops and Products 98: 93-99.
  • Nishimura, H., Kamiya, A., Nagata, T., Katahira, M., Watanabe, T. (2018) Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Scientific reports 8:1-11.
  • Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T. (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol 74:69–80.
  • Pesce, G.R., Fernandes, M. C., Mauromicale, G. (2020) Globe artichoke crop residues and their potential for bioethanol production by dilute acid hydrolysis. Biomass and Bioenergy 134:105471.
  • Phitsuwan, P., Sakka, K., Ratanakhanokchai, K. (2016) Structural changes and enzymatic response of Napier grass (Pennisetum purpureum) stem induced by alkaline pretreatment. Bioresource technology 218:247-256.
  • Rossa, B., Tuaers, A.V., Naidoo, G., Von Willert, D.J. (1998) Arundo donax L. (Poaceae) — a C3 species with unusually high photosynthetic capacity. Botanica Acta, 111:216–221.
  • Qing, Q., Wyman, C.E. (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnology for biofuels 4:1-12.
  • Santos, C.C., de Souza, W., Sant’Anna, C., Brienzo, M. (2018) Elephant grass leaves have lower recalcitrance to acid pretreatment than stems, with higher potential for ethanol production. Industrial Crops and Products 111:193-200.
  • Si, S., Chen, Y., Fan, C., Hu, H., Li, Y., Huang, J., Liao, H., Hao, B., Li, Q., Peng, L., Tu, Y., 2015. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresource technology 183:248-254.
  • Umagiliyage, A.L., Choudhary, R., Liang, Y., Haddock, J., Watson, D.G. (2015) Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Industrial Crops and Products 74:977-986.
  • Xu, J., Cheng, J.J., Sharma-Shivappa, R.R., Burns, J.C. (2010) Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy & Fuels 24:2113-2119.
  • Xu, J., Cheng, J.J. (2011) Pretreatment of switchgrass for sugar production with the combination of sodium hydroxide and lime. Bioresource technology 102:3861-3868.
  • Wang, Z., Keshwani, D.R., Redding, A.P., Cheng, J.J. (2010) Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource technology, 101:3583-3585.
  • Van Soest, P.J. (1963) Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists 46:829–835.
  • Yan, X., Cheng, J.R., Wang, Y.T., Zhu, M.J. (2020) Enhanced lignin removal and enzymolysis efficiency of grass waste by hydrogen peroxide synergized dilute alkali pretreatment. Bioresource technology 301:122756.
  • Zhang, M., Wang, F., Su, R., Qi, W., He, Z. (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresource Technology 101:4959-4964.
  • Zhu, S., Wu, Y., Yu, Z., Liao, J., Zhang, Y. (2005) Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem. 40:3082–3086.
Year 2021, Volume: 36 Issue: 1, 81 - 92, 30.06.2021

Abstract

References

  • Aditiya, H.B., Mahlia, T.M.I., Chong, W.T., Nur, H., Sebayang, A.H. (2016) Second generation bioethanol production: A critical review. Renewable and sustainable energy reviews 66:631-653.
  • Aita, G.A., Salvi, D.A., Walker, M.S. (2011) Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresource Technology 102:4444-4448.
  • Barcelos, C.A., Maeda, R.N., Betancur, G.J.V., Pereira, N. (2013) The essentialness of delignification on enzymatic hydrolysis of sugar cane bagasse cellulignin for second generation ethanol production. Waste and Biomass Valorization 4:341-346.
  • Boose, A.B., Holt, J.S. (1999) Environmental effects on asexual reproduction in Arundo donax. Weed Research, 39:117–27.
  • Cao, W., Sun, C., Liu, R., Yin, R., Wu, X. (2012) Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology 111:215-221.
  • Chen, B.Y., Chen, S.W., Wang, H.T. (2012) Use of different alkaline pretreatments and enzyme models to improve low-cost cellulosic biomass conversion. Biomass and Bioenergy 39:182-191.
  • Chen, M., Xia, L., Xue, P. (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. International Biodeterioration & Biodegradation 59:85-89.
  • Cheng, Y.S., Zheng, Y., Yu, C.W., Dooley, T.M., Jenkins, B.M., Vander Gheynst, J.S. (2010) Evaluation of high solids alkaline pretreatment of rice straw. Applied biochemistry and biotechnology 162:1768-1784.
  • Choudhary, R., Umagiliyage, A.L., Liang, Y., Siddaramu, T., Haddock, J., Markevicius, G. (2012) Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass and Bioenergy 39:218-226.
  • Eliana, C., Jorge, R., Juan, P., Luis, R. (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118: 41-47.
  • Haq, F., Ali, H., Shuaib, M., Badshah, M., Hassan, S.W., Munis, M.F.H., Chaudhary, H.J. (2016) Recent progress in bioethanol production from lignocellulosic materials: A review. International Journal of Green Energy 13:1413-1441.
  • Haque, M.A., Barman, D.N., Kang, T.H., Kim, M.K., Kim, J., Kim, H., Yun, H.D. (2013) Effect of dilute alkali pretreatment on structural features and enhanced enzymatic hydrolysis of Miscanthus sinensis at boiling temperature with low residence time. Biosystems engineering 114:294-305.
  • Hendricks, A.T.W., Zeeman, G. (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100:10-18.
  • Jiang, D., Ge, X., Zhang, Q., Li, Y. (2016) Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production. Bioresource technology 216:60-68.
  • Jung, W., Savithri, D., Sharma-Shivappa, R., Kolar, P. (2020) Effect of sodium hydroxide pretreatment on lignin monomeric components of Miscanthus× giganteus and enzymatic hydrolysis. Waste and Biomass Valorization, 11:5891-5900.
  • Kärcher, M.A., Iqbal, Y., Lewandowski, I., Senn, T. (2015) Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment. Bioresource technology, 180, 360-364.
  • Kaur, K., Phutela, U.G. (2016) Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment. Renewable Energy 92:178-184.
  • Keshav, P.K., Banoth, C., Anthappagudem, A., Linga, V.R., Bhukya, B. (2018) Sequential acid and enzymatic saccharification of steam exploded cotton stalk and subsequent ethanol production using Scheffersomyces stipitis NCIM 3498. Industrial Crops and Products 125:462-467.
  • Khullar, E., Dien, B.S., Rausch, K.D., Tumbleson, M.E., Singh, V. (2013) Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Industrial crops and products 44:11-17.
  • Kuşvuran, A., Kuşvuran, Ş., Nazlı, R. İ., Tansı, V. (2019) Kargı Kamışı (Arundo donax L.)’nda Tuz Stresinin Morfolojik ve Fizyolojik Özelliklere Etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29:233-241.
  • Láinez, M., Ruiz, H.A., Castro-Luna, A.A., Martínez-Hernández, S. (2018) Release of simple sugars from lignocellulosic biomass of Agave salmiana leaves subject to sequential pretreatment and enzymatic saccharification. Biomass and bioenergy 118:133-140.
  • Lemons e Silva, C.F., Artigas Schirmer, M., Nobuyuki Maeda, R., Araújo Barcelos, C., Pereira, N., (2015) Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electronic Journal of Biotechnology 18:10-15.
  • Lemões, J.S., e Silva, C.F.L., Avila, S.P.F., Montero, C.R.S., e Silva, S.D.D.A., Samios, D., Peralba, M.D.C.R. (2018) Chemical pretreatment of Arundo donax L. for second-generation ethanol production. Electronic Journal of Biotechnology 31:67-74.
  • Menezes, E.G., do Carmo, J.R., Alves, J.G.L., Menezes, A.G., Guimarães, I.C., Queiroz, F., Pimenta, C.J. (2014) Optimization of alkaline pretreatment of coffee pulp for production of bioethanol. Biotechnology progress 30:451-462.
  • Michalska, K., Bizukojć, M., Ledakowicz, S. (2015) Pretreatment of energy crops with sodium hydroxide and cellulolytic enzymes to increase biogas production. Biomass and Bioenergy 80: 213-221.
  • Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426–428.
  • Nazlı, R. İ. (2017) Akdeniz iklim koşullarında bazı çok yıllık buğdaygillerin (miskantus, dallı darı, kargı kamışı, yumrulu yem kanyaşı) enerji bitkisi olarak kullanım olanakları. Doktora Tezi. Çukurova Üniversitesi.
  • Nazli, R.I., Tansi, V., Öztürk, H.H., Kusvuran, A. (2018) Miscanthus, switchgrass, giant reed, and bulbous canary grass as potential bioenergy crops in a semi-arid Mediterranean environment. Industrial Crops and Products 125:9-23.
  • Nazli, R. İ. (2020) Evaluation of different sweet sorghum cultivars for bioethanol yield potential and bagasse combustion characteristics in a semiarid Mediterranean environment. Biomass and Bioenergy 139:105624.
  • Niemi, P., Pihlajaniemi, V., Rinne, M., Siika-aho, M. (2017) Production of sugars from grass silage after steam explosion or soaking in aqueous ammonia. Industrial Crops and Products 98: 93-99.
  • Nishimura, H., Kamiya, A., Nagata, T., Katahira, M., Watanabe, T. (2018) Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Scientific reports 8:1-11.
  • Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T. (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol 74:69–80.
  • Pesce, G.R., Fernandes, M. C., Mauromicale, G. (2020) Globe artichoke crop residues and their potential for bioethanol production by dilute acid hydrolysis. Biomass and Bioenergy 134:105471.
  • Phitsuwan, P., Sakka, K., Ratanakhanokchai, K. (2016) Structural changes and enzymatic response of Napier grass (Pennisetum purpureum) stem induced by alkaline pretreatment. Bioresource technology 218:247-256.
  • Rossa, B., Tuaers, A.V., Naidoo, G., Von Willert, D.J. (1998) Arundo donax L. (Poaceae) — a C3 species with unusually high photosynthetic capacity. Botanica Acta, 111:216–221.
  • Qing, Q., Wyman, C.E. (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnology for biofuels 4:1-12.
  • Santos, C.C., de Souza, W., Sant’Anna, C., Brienzo, M. (2018) Elephant grass leaves have lower recalcitrance to acid pretreatment than stems, with higher potential for ethanol production. Industrial Crops and Products 111:193-200.
  • Si, S., Chen, Y., Fan, C., Hu, H., Li, Y., Huang, J., Liao, H., Hao, B., Li, Q., Peng, L., Tu, Y., 2015. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresource technology 183:248-254.
  • Umagiliyage, A.L., Choudhary, R., Liang, Y., Haddock, J., Watson, D.G. (2015) Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Industrial Crops and Products 74:977-986.
  • Xu, J., Cheng, J.J., Sharma-Shivappa, R.R., Burns, J.C. (2010) Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy & Fuels 24:2113-2119.
  • Xu, J., Cheng, J.J. (2011) Pretreatment of switchgrass for sugar production with the combination of sodium hydroxide and lime. Bioresource technology 102:3861-3868.
  • Wang, Z., Keshwani, D.R., Redding, A.P., Cheng, J.J. (2010) Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource technology, 101:3583-3585.
  • Van Soest, P.J. (1963) Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists 46:829–835.
  • Yan, X., Cheng, J.R., Wang, Y.T., Zhu, M.J. (2020) Enhanced lignin removal and enzymolysis efficiency of grass waste by hydrogen peroxide synergized dilute alkali pretreatment. Bioresource technology 301:122756.
  • Zhang, M., Wang, F., Su, R., Qi, W., He, Z. (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresource Technology 101:4959-4964.
  • Zhu, S., Wu, Y., Yu, Z., Liao, J., Zhang, Y. (2005) Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem. 40:3082–3086.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research Article
Authors

Recep İrfan Nazlı 0000-0002-6416-6603

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 36 Issue: 1

Cite

APA Nazlı, R. İ. (2021). Farklı Seyreltik Sodyum Hidroksit Ön İşlem Metotlarının Kargı Kamışı (Arundo donax L.) Bitkisinden Fermente Olabilir Şeker ve Etanol Üretimine Etkileri. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 36(1), 81-92.
AMA Nazlı Rİ. Farklı Seyreltik Sodyum Hidroksit Ön İşlem Metotlarının Kargı Kamışı (Arundo donax L.) Bitkisinden Fermente Olabilir Şeker ve Etanol Üretimine Etkileri. Çukurova J. Agric. Food. Sciences. June 2021;36(1):81-92.
Chicago Nazlı, Recep İrfan. “Farklı Seyreltik Sodyum Hidroksit Ön İşlem Metotlarının Kargı Kamışı (Arundo Donax L.) Bitkisinden Fermente Olabilir Şeker Ve Etanol Üretimine Etkileri”. Çukurova Tarım Ve Gıda Bilimleri Dergisi 36, no. 1 (June 2021): 81-92.
EndNote Nazlı Rİ (June 1, 2021) Farklı Seyreltik Sodyum Hidroksit Ön İşlem Metotlarının Kargı Kamışı (Arundo donax L.) Bitkisinden Fermente Olabilir Şeker ve Etanol Üretimine Etkileri. Çukurova Tarım ve Gıda Bilimleri Dergisi 36 1 81–92.
IEEE R. İ. Nazlı, “Farklı Seyreltik Sodyum Hidroksit Ön İşlem Metotlarının Kargı Kamışı (Arundo donax L.) Bitkisinden Fermente Olabilir Şeker ve Etanol Üretimine Etkileri”, Çukurova J. Agric. Food. Sciences, vol. 36, no. 1, pp. 81–92, 2021.
ISNAD Nazlı, Recep İrfan. “Farklı Seyreltik Sodyum Hidroksit Ön İşlem Metotlarının Kargı Kamışı (Arundo Donax L.) Bitkisinden Fermente Olabilir Şeker Ve Etanol Üretimine Etkileri”. Çukurova Tarım ve Gıda Bilimleri Dergisi 36/1 (June 2021), 81-92.
JAMA Nazlı Rİ. Farklı Seyreltik Sodyum Hidroksit Ön İşlem Metotlarının Kargı Kamışı (Arundo donax L.) Bitkisinden Fermente Olabilir Şeker ve Etanol Üretimine Etkileri. Çukurova J. Agric. Food. Sciences. 2021;36:81–92.
MLA Nazlı, Recep İrfan. “Farklı Seyreltik Sodyum Hidroksit Ön İşlem Metotlarının Kargı Kamışı (Arundo Donax L.) Bitkisinden Fermente Olabilir Şeker Ve Etanol Üretimine Etkileri”. Çukurova Tarım Ve Gıda Bilimleri Dergisi, vol. 36, no. 1, 2021, pp. 81-92.
Vancouver Nazlı Rİ. Farklı Seyreltik Sodyum Hidroksit Ön İşlem Metotlarının Kargı Kamışı (Arundo donax L.) Bitkisinden Fermente Olabilir Şeker ve Etanol Üretimine Etkileri. Çukurova J. Agric. Food. Sciences. 2021;36(1):81-92.

From January 1, 2016 “Çukurova University Journal of Faculty of Agriculture” continuous its publication life as “Çukurova Journal of Agriculture and Food Sciences”.