Research Article
BibTex RIS Cite

Investigation of the Effect of Background Radiations on Infrared Sensor Measurement Data in Hot Axle Box Detection Systems

Year 2024, Issue: 19, 17 - 26, 31.01.2024
https://doi.org/10.47072/demiryolu.1355960

Abstract

Infrared temperature measurement technology is of critical importance for the safety and efficiency of railway vehicles. However, environmental factors, particularly background radiations, can hinder accurate measurements or lead to misleading results. This study examines the impact of background radiations on the infrared temperature measurement data for hot axle box system and proposes an analytical method to compensate this effect, thereby contributing to achieving more precise and reliable measurements. For this purpose, a simulation model based on actual axle box data was established, and the impact of different ambient temperatures on sensor measurement data was examined. The data obtained from the simulation results indicate that the effect of background radiation becomes more prominent as the temperature difference between the environment and the measurement surface decreases. For example, a temperature deviation of 6,8°C has occurred at a target surface temperature of 50°C and an ambient temperature of 45°C. Furthermore, the results show that accurate determination of the surface’s emissivity coefficient is crucial for the infrared sensor to perceive temperature correctly.

References

  • [1] G. B. Anderson, “Acoustic detection of distressed freight car roller bearings,” in ASME/IEEE Joint Rail Conference, Colorado, USA, 2007, pp. 167-171
  • [2] J. Montalvo, C. Tarawneh, and A. A. Fuentes, “Vibration based defect detection for freight railcar tapered-roller bearings,” in Proceedings of the 2018 Joint Rail Conference, Pittsburgh, USA, 2018
  • [3] C. Tarawneh, J. Aranda, V. Hernandez, S. Crown, and J. Montalvo, “An investigation into wayside hot-box detector efficacy and optimization,” International Journal of Rail Transportation, vol. 8, no. 3, pp. 264-284, 2020, doi: 10.1080/23248378.2019.1636721
  • [4] C. Tarawneh, J. Montalvo and B. Wilson, “Defect detection in freight railcar tapered-roller bearings using vibration techniques,” Rail. Eng. Science, vol. 29, pp. 42–58, 2021, doi: 10.1007/s40534-020-00230-x
  • [5] Railway applications - axlebox condition monitoring - interface and design requirements - Part 1: Track side equipment and rolling stock axlebox, BS EN 15437-1:2009+A1:2022, 2023
  • [6] O. Lunys, S. Dailydka, and G. Bureika, “Investigation on features and tendencies of axle-box heating,” Transport Problems, vol. 10, no. 1, pp. 105-114, 2015, doi: 10.21307/tp-2015-011
  • [7] N. Karagoz, H. İ. Acar, and B. Selcuk, “Pik döküm ve kompozit fren pabucu kullanılan yük vagonunda uzun süreli frenlenme sonucu tekerlekte açığa çıkan ısı dağılımının sayısal analiz metodu ile incelenmesi,” Demiryolu Mühendisliği, sayı.12, ss.64-72, Tem. 2020, doi:10.47072/demiryolu.746008
  • [8] Federal Railroad Administration, Washington, DC, USA. Effectiveness of wayside detector technologies on train operation safety. Accessed: Aug. 10, 2023. [Online]. Available: https://railroads.dot.gov/elibrary/effectiveness-wayside-detector-technologies-train-operation-safety
  • [9] European Railway Agency, England. Assessment of freight train derailment risk reduction measures: Part A Final Report. Accessed: Aug. 10, 2023. [Online]. Available: https://www.era.europa.eu/system/files/202210/DNV%20study%20on%20freight%20train%20derailments.pdf
  • [10] C. Tarawneh, L. Sotelo, A. A. Villareal, N. D. L. Santos, R. Y. Lechtenberg, and R. Jones, “Temperature profiles of railroad tapered roller bearings with defective inner and outer rings, in Proceedings of the 2018 Joint Rail Conference, Columbia, USA, 2016
  • [11] D. H. Shin, M. Kim, J. S. Kim, B. J. Lee, and J. Lee, “Precise infrared thermometry with considering background radiation for gas turbine air cooling application,” International Journal of Thermal Sciences, vol. 158, 2020, doi: 10.1016/j.ijthermalsci.2020.106534
  • [12] Y. H. Li, X. G. Sun, and G. B. Yuan, “Accurate measuring temperature with infrared thermal imager,” Optics and Precision Engineering, vol. 9, pp. 1336-1341, 2007
  • [13] Y. Zhang, Z. Wang, X. Fu, F. Yan, and T. Kong, “An experimental method for improving temperature measurement accuracy of infrared thermal imager,” Infrared Physics & Technology, vol. 102, 2019, doi: 10.1016/j.infrared.2019.103020
  • [14] F. J. M. Meca, M. M. Quintas, F. J. R. Sanchez, and P. R. Sainz, “Infrared temperature measurement system using photoconductive PbSe sensors without radiation chopping,” Sensors and Actuators A: Physical, vol. 100, pp. 206-213, doi: 10.1016/S0924-4247(02)00069-9

Sıcak Aks Kutusu Tespit Sistemlerinde Arka Plan Işımalarının Kızılötesi Sensor Ölçüm Verilerine Etkisinin İncelenmesi

Year 2024, Issue: 19, 17 - 26, 31.01.2024
https://doi.org/10.47072/demiryolu.1355960

Abstract

Kızılötesi sıcaklık ölçüm teknolojisi, demiryolu taşıtlarının güvenliği ve verimliliği için kritik öneme sahiptir. Ancak çevresel koşullar, özellikle yansıyan radyasyona bağlı arka plan ışımaları (back-ground radiation), doğru ölçümleri engelleyebilir veya yanıltıcı sonuçlara yol açabilir. Bu çalışma, arka plan ışımalarının sıcak aks kutusu kızılötesi sıcaklık sensör ölçüm verilerine olan etkisini incelemekte ve bu etkiyi elimine edecek analitik bir yöntem önermektedir. Bu sayede daha doğru ve güvenilir sonuçlar elde edilmesine katkı sunmaktadır. Bu amaçla, aks kutusunun gerçek verilerine dayalı bir simülasyon modeli kurulmuş ve farklı ortam sıcaklıklarının sensör ölçüm sonuçlarına etkisi incelenmiştir. Simülasyon sonuçlarından elde edilen veriler, ortam ile ölçüm yüzeyi arasındaki sıcaklık farkı azaldıkça arka plan ışıma etkisinin daha yüksek olduğunu göstermiştir. Örneğin 50°C bir hedef yüzey sıcaklığı ve 45°C ortam sıcaklığı altında 6,8°C bir sıcaklık sapması oluşmuştur. Ayrıca kızılötesi sensörün sıcaklığı doğru algılaması için yüzeyin yayıcılık katsayısının düzgün belirlenmesinin önemli olduğu görülmüştür.

References

  • [1] G. B. Anderson, “Acoustic detection of distressed freight car roller bearings,” in ASME/IEEE Joint Rail Conference, Colorado, USA, 2007, pp. 167-171
  • [2] J. Montalvo, C. Tarawneh, and A. A. Fuentes, “Vibration based defect detection for freight railcar tapered-roller bearings,” in Proceedings of the 2018 Joint Rail Conference, Pittsburgh, USA, 2018
  • [3] C. Tarawneh, J. Aranda, V. Hernandez, S. Crown, and J. Montalvo, “An investigation into wayside hot-box detector efficacy and optimization,” International Journal of Rail Transportation, vol. 8, no. 3, pp. 264-284, 2020, doi: 10.1080/23248378.2019.1636721
  • [4] C. Tarawneh, J. Montalvo and B. Wilson, “Defect detection in freight railcar tapered-roller bearings using vibration techniques,” Rail. Eng. Science, vol. 29, pp. 42–58, 2021, doi: 10.1007/s40534-020-00230-x
  • [5] Railway applications - axlebox condition monitoring - interface and design requirements - Part 1: Track side equipment and rolling stock axlebox, BS EN 15437-1:2009+A1:2022, 2023
  • [6] O. Lunys, S. Dailydka, and G. Bureika, “Investigation on features and tendencies of axle-box heating,” Transport Problems, vol. 10, no. 1, pp. 105-114, 2015, doi: 10.21307/tp-2015-011
  • [7] N. Karagoz, H. İ. Acar, and B. Selcuk, “Pik döküm ve kompozit fren pabucu kullanılan yük vagonunda uzun süreli frenlenme sonucu tekerlekte açığa çıkan ısı dağılımının sayısal analiz metodu ile incelenmesi,” Demiryolu Mühendisliği, sayı.12, ss.64-72, Tem. 2020, doi:10.47072/demiryolu.746008
  • [8] Federal Railroad Administration, Washington, DC, USA. Effectiveness of wayside detector technologies on train operation safety. Accessed: Aug. 10, 2023. [Online]. Available: https://railroads.dot.gov/elibrary/effectiveness-wayside-detector-technologies-train-operation-safety
  • [9] European Railway Agency, England. Assessment of freight train derailment risk reduction measures: Part A Final Report. Accessed: Aug. 10, 2023. [Online]. Available: https://www.era.europa.eu/system/files/202210/DNV%20study%20on%20freight%20train%20derailments.pdf
  • [10] C. Tarawneh, L. Sotelo, A. A. Villareal, N. D. L. Santos, R. Y. Lechtenberg, and R. Jones, “Temperature profiles of railroad tapered roller bearings with defective inner and outer rings, in Proceedings of the 2018 Joint Rail Conference, Columbia, USA, 2016
  • [11] D. H. Shin, M. Kim, J. S. Kim, B. J. Lee, and J. Lee, “Precise infrared thermometry with considering background radiation for gas turbine air cooling application,” International Journal of Thermal Sciences, vol. 158, 2020, doi: 10.1016/j.ijthermalsci.2020.106534
  • [12] Y. H. Li, X. G. Sun, and G. B. Yuan, “Accurate measuring temperature with infrared thermal imager,” Optics and Precision Engineering, vol. 9, pp. 1336-1341, 2007
  • [13] Y. Zhang, Z. Wang, X. Fu, F. Yan, and T. Kong, “An experimental method for improving temperature measurement accuracy of infrared thermal imager,” Infrared Physics & Technology, vol. 102, 2019, doi: 10.1016/j.infrared.2019.103020
  • [14] F. J. M. Meca, M. M. Quintas, F. J. R. Sanchez, and P. R. Sainz, “Infrared temperature measurement system using photoconductive PbSe sensors without radiation chopping,” Sensors and Actuators A: Physical, vol. 100, pp. 206-213, doi: 10.1016/S0924-4247(02)00069-9
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Electronic Sensors, Electronic Device and System Performance Evaluation, Testing and Simulation
Journal Section Article
Authors

Kürşad Gökce 0000-0002-1158-684X

Publication Date January 31, 2024
Submission Date September 6, 2023
Published in Issue Year 2024 Issue: 19

Cite

IEEE K. Gökce, “Sıcak Aks Kutusu Tespit Sistemlerinde Arka Plan Işımalarının Kızılötesi Sensor Ölçüm Verilerine Etkisinin İncelenmesi”, Demiryolu Mühendisliği, no. 19, pp. 17–26, January 2024, doi: 10.47072/demiryolu.1355960.