Research Article
BibTex RIS Cite

Mikrotremor Verilerinde Çapraz Spektrum ve Güç Spektrumu Tekniği Kullanılarak Zemin Büyütmesinin Belirlenmesi

Year 2023, , 37 - 53, 26.01.2023
https://doi.org/10.21205/deufmd.2023257304

Abstract

Zemin büyütmesi ve etkin frekansların belirlenmesinde en çok tercih edilen yöntem Nakamura HVSR tekniğidir. Çapraz Spektrum ve Güç Spektrumu tekniği; yatay ve düşey bileşenin çapraz spektrumunun, düşey bileşenin güç spektrumuna oranlanması temeline dayanan bir tekniktir. Bu çalışmada, Burdur İl Merkezinde yapılan mikrotremor çalışmalarına ait sonuçlar HVSR Tekniği ile birlikte Çapraz Spektrum ve Güç Spektrumu Tekniğini kullanarak veriler değerlendirilmiş ve karşılaştırılmıştır. Her iki yöntemde elde edilen etkin frekanslar % 96 ile %100 arasında değişen bir oranda uyumlu sonuçlar vermiştir. Buna karşın bu frekanslarda, HVSR spektrumları zemin büyütmesi değerleri %20 ile % 60 daha büyük değerler vermiştir. HVSR tekniğinden hesaplanan hasar görebilirlik katsayıları 0,7 ile 4,3 arasında değişen değerler verirken, Çapraz Spektrum ve Güç Spektrumu tekniğinden hesaplanan hasar görebilirlik katsayıları ise 0,1 ile 4,8 arasında değişen değerler vermiştir. Genel olarak her iki yöntemde de yüksek frekanslarda büyütme değerlerinde bir artış olduğu görülmüştür. Zemin büyütmesi ve hasar görebilirlik değerlerinin büyük olduğu noktalar, Burdur İl merkezini etkileyecek bir deprem anında yüksek yapısal hasar riski olan alanları göstermesi bakımından önemlidir.

Thanks

Burdur İl Merkezinde yapılan mikrotremor çalışmalarına yardım ve katkılarından dolayı Doç.Dr. Veli KARA'ya, makaleye yorum ve görüşleriyle katkıda bulunan Prof.Dr. Fatma GÜRBÜZ’e teşekkür ederim

References

  • Delgado J, Lopez Casado C, Estevez A, Giner J, Cuenca A, Molina S.. 2000 Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool. Journal of Applied Geophysics;45(1):19e32.s.https://doi.org/10.101 6/S0926-9851(00)00016-1
  • Borcherdt, R.D. 1970,Effects of local geology on ground motion near San Francisco Bay.Bulletin of the Seismological Society of America60, 29–61. https://doi.org/10.1785/BSSA0600010029
  • Nakamura Y. 1996 “Real Time Information Systems for Seismic Hazards Mitigation UrEDAS, HERAS and PIC”, Railway Technical Research Institute, 37(3), 112-127.
  • Zaharia, B., Radulian, M., Popa, M., Grecu, B., Bala,A. and Tataru, D. 2008. “Estimation of the local response using the Nakamura method for theBucharest area. Romanian Report in Physics, Vol. 60, No. 1, P. 131-144.
  • Tuladhar, R. 2002 ”Seismic microzonation ofgreather Bangkok using microtremor. Thesis. Asian Institute of Technology, School of Civil Engineering, Thailand”
  • Semblat J F, Kham M, Bard P.Y. 2008.“Seismic wave propagation in alluvial basins and influence of sitecity interaction”, Bulletin of the Seismological Society of America, 98(6),2665-2678, https://doi.org/10.1785/0120080093
  • Bard, P. Y. 1999. Microtremor measurements: a tool for site effect estimation. The effects of surface geology on seismic motion, 3, 1251-1279.
  • Sylvette, B. C., Cécile, C., Pierre-Yves, B., Fabrice, C., Peter, M., Jozef, K., & Fäh, D. 2006 H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International, 167(2), 827-837. https://doi.org/10.1111/j.1365- 246X.2006.03154.
  • Bonnefoy-Claudet, S., Köhler, A., Cornou, C., Wathelet, M., & Bard, P. Y. 2008. Effects of Love waves on microtremor H/V ratio. Bulletin of the Seismological Society of America, 98(1), 288-300. https://doi.org/10.1785/0120070063
  • Woolery, E. W., & Street, R. 2002. 3D near-surface soil response from H/V ambient-noise ratios. Soil Dynamics and Earthquake Engineering, 22(9-12), 865-876. https://doi.org/10.1016/S0267- 7261(02)00109-4
  • Pilz M, Parolai S, Leyton F, Campos J, and J, Zschau J. 2009. A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile, Geophys. J. Int. 178, 713–728. https://doi.org/v10.1111/j.1365- 246X.2009.04195.
  • Pilz, M., Parolai, S., Stupazzini, M., Paolucci, R., & Zschau, J. 2011 Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code. Geophysical Journal International, 187(2), 929-945. https://doi.org/10.1111/j.1365- 246X.2011.05183.
  • Yassminh, R., Gallegos, A., Sandvol, E., & Ni, J. 2019. Investigation of the regional site response in the Central and Eastern United States. Bulletin of the Seismological Society of America, 109(3), 1005- 1024. https://doi.org/10.1785/0120180230
  • Borcherdt, R. D. 1992. Simplified site classes and empirical amplification factors for site-dependent code provisions. In Proc. NCEER, SEAOC, BSSC Workshop on Site Response during Earthquakes and Seismic Code Provisions (pp. 18-20). University of Southern California, Los Angeles, California.
  • Borcherdt, R. D. 1994. Estimates of site-dependent response spectra for design (methodology and justification). Earthquake spectra, 10(4), 617-653. https://doi.org/10.1193/1.1585791
  • Bekler, T., Demirci, A., Ekinci, Y. L., & Büyüksaraç, A. 2019. Analysis of local site conditions through geophysical parameters at a city under earthquake threat: Çanakkale, NW Turkey. Journal of applied geophysics, 163, 31-39. https://doi.org/10.1016/j.jappgeo.2019.02.009
  • Hartzell, S., Carver, D., & Williams, R. A. 2001. Site response, shallow shear-wave velocity, and damage in Los Gatos, California, from the 1989 Loma Prieta earthquake. Bulletin of the Seismological Society of America, 91(3), 468-478. https://doi.org/10.1785/0120000235
  • Boore, D. M. 2014. Ground-motion prediction equations: Past, present, and future. In 2014 Annual Meeting of the Seismological Society of America (Vol. 30).
  • Wald, L. A., & Mori, J. 2000. Evaluation of methods for estimating linear site-response amplifications in the Los Angeles region. Bulletin of the Seismological Society of America, 90(6B), S32-S42. https://doi.org/10.1785/0119970170
  • Mucciarelli M, Gallipoli, M. R. 2006 Comparison between Vs30 and other estimates of site amplification in Italy. In First European Conference on Earthquake Engineering and Seismology.
  • Hassani, B., & Atkinson, G. M. 2016. Applicability of the site fundamental frequency as a VS 30 proxy for central and eastern North America. Bulletin of the Seismological Society of America, 106(2), 653- 664. https://doi.org/10.1785/0120150259
  • Gürbüz, M. 2002 Avcılar Mikrobölgeleme Çalışmaları. Süleyman Demirel Ünivesitesi Jeofizik Mühendisliği Anabilim Dalı Yüksek Lisan Tezi, Isparta
  • Sugianto, N., Muhammad, F., & Wiwit, S. 2016. Local geology condition of bengkulu city based on seismic vulnerability index (Kg). ARPN Journal of Engineering and Applied Sciences, 11(7), 4797- 4803.
  • Mucciarelli, M., Gallipoli, M. R., & Arcieri, M. 2003. The stability of the horizontal-to-vertical spectral ratio of triggered noise and earthquake recordings. Bulletin of the Seismological Society of America, 93(3), 1407-1412. https://doi.org/10.1785/0120020213
  • Nakamura, Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1).
  • Fäh, D., Kind, F., & Giardini, D. 2001. A theoretical investigation of average H/V ratios. Geophysical Journal International, 145(2), 535-549. https://doi.org/10.1046/j.0956- 540x.2001.01406
  • Bonnefoy-Claudet, S., Cotton, F., & Bard, P. Y. 2006. The nature of noise wavefield and its applications for site effects studies: A literature review. EarthScience Reviews, 79(3-4), 205-227. https://doi.org/10.1016/j.earscirev.2006.07.0 04
  • Över, S., Büyüksaraç, A., Bekta, Ö., & Filazi, A. 2011. Assessment of potential seismic hazard and site effect in Antakya (Hatay Province), SE Turkey. Environmental Earth Sciences, 62(2), 313-326. https://doi.org/10.1007/s12665-010-0525-3
  • Büyüksaraç, A., Bektaş, Ö., Yılmaz, H., & Arısoy, M. Ö. 2013. Preliminary seismic microzonation of Sivas city (Turkey) using microtremor and refraction microtremor (ReMi) measurements. Journal of seismology, 17(2), 425-435. https://doi.org/10.1007/s10950-012-9328-1
  • Büyüksaraç, A., Över, S., Geneş, M. C., Bikçe, M., Kacin, S., & Bektaş, Ö. 2014. Estimating shear wave velocity using acceleration data in Antakya (Turkey). Earth Sciences Research Journal, 18(2), 87-98.
  • Akkaya, İ. 2015. The application of HVSR microtremor survey method in Yüksekova (Hakkari) region, eastern Turkey. Journal of African Earth Sciences, 109, 87-95. https://doi.org/10.1016/j.jafrearsci.2015.05.018
  • FRY, D. E. 1970 The use of cross-correlation and power spectral techniques for the identification of the hunter MK. 12 dynamic response.Ministry Of Technology Aeronautical Research Councll Current Papers. C.P. 1121.
  • Ergin M, Özalaybey S, Ayçın M N, Aktar M. 2000.“Avcılar Yöresi Yer Büyütme Etkisinin Sismik Yöntemle Araştırılması”, Aktif tektonik Araştırma Grubu Dördüncü Toplantısı, p. 46, Eskişehir, Türkiye, 16-17 Kasım.
  • Yalcinkaya E, Alptekin O. 2002. “A preliminary study of site effects in Gölcük-Izmit Earthquake of 17 August 1999 (Mw = 7.4) in Turkey”, Istanbul Yerbilimleri Dergisi, 277–281.
  • Cranswick E, Özel O, Meremonte M, Erdik M, Şafak E, Mueller C, Overturr D and Frankel A. 2000. “Earthquake damage, Site Response, and Building Response in Avcilar, West of Istanbul, Turkey”, International Journal for Housing Science and Its Aplications, Special Issue: Kocaeli Earthquake 1999, 24(1), 85-96.
  • Ertunç A, Karagüzel R, Yağmurlu F, Türker AE, Keskin SN. 2001. “Burdur Belediyesi Kent Merkezi ve Yakın Çevresinin Yerleşime Uygunluk Açısından İncelenmesi”, Süleyman Demirel Üniversitesi Mühendislik Mimarlık Fakültesi Sonuç Raporu, Isparta, Türkiye.
  • DSİ. 2016. DSİ 18. Bölge Müdürlüğü, Burdur Göller Havzası Yeraltısuyu Planlama( Hidrojeolojik Etüt) Raporu Yapım İşi Nihayi Rapor”, Cilt 1,Isparta Türkiye.
  • Nakamura Y. 2000. “Clear Identification of Fundamental Idea of Nakamura’s Technique and Its Applications”, Proceedings of 12th World Conferance on Earthquake Engineering, New Zeland, Auckland Vol. 2656.
  • Kennaugh, E. M., & Moffatt, D. L. 1965. Transient and impulse response approximations. Proceedings of the IEEE, 53(8), 893-901. DOI: 10.1109/PROC.1965.4068
  • Box G E P, Jenkins G M. 1970 “Time Series Analysis Forecasting and Control”, San Francisco-HoldenDay, books.google.com.
  • Marco J.B. 1993 Armax and Transfer Function Modelling in Hydrology. In: Marco J.B., Harboe R., Salas J.D. (eds) Stochastic Hydrology and its Use in Water Resources Systems Simulation and Optimization. NATO ASI Series (Series E: Applied Sciences), vol 237. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1697-8_6
  • Remesan R, Mathew J .2015 ”Hydrological data driven modelling: a case study approach”, Of Earth Systems Data and Models, vol. 1, Springer International Publishing, Switzerland DOI:,10.1007/978-3-319-09235-5.
  • Besbes M, De Marsily G. From infiltration to recharge: use of a parametric transfer function, Journal of Hydrology, 74(3-4), 271-293 .DOI:10.1016/0022-1694(84)90019-2, 1984.
  • Gehrels J C, Van Geer F C, De Vries J J, 1994. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones J. Hydrol., 157,pp. 105- 138, DOI:10.1016/0022-1694(94)90101-5.
  • Stein, J. Y. 2000. Digital signal processing: a computer science perspective (p. 115). New York: Wiley. DOI:10.1002/047120059
  • Özdağ, Ö. C., & Gönenç, T. 2020. Modeling stratigraphic structure of Menemen Plain Izmir/Turkey by microgravity, passive seismic methods and examining its behavior under earthquake effect. Journal of Applied Geophysics, 182, 104175. https://doi.org/10.1016/j.jappgeo.2020.104175

Determination of Soil Amplification in Microtremor Data Using Cross Spectrum and Power Spectrum Techniques

Year 2023, , 37 - 53, 26.01.2023
https://doi.org/10.21205/deufmd.2023257304

Abstract

The most preferred method for soil amplification and determination of effective frequencies is the Nakamura HVSR technique. Cross Spectrum and Power Spectrum technique; It is a technique based on the ratio of the cross spectrum of the horizontal and vertical components to the power spectrum of the vertical component. In this study, the results of the microtremor studies which were conducted in the city center of Burdur, were evaluated and compared by using the Cross Spectrum and Power Spectrum technique together with the HVSR technique. The effective frequencies were obtained in both methods which gave concurring results varying between 96% and 100%. On the other hand, at these frequencies, the ground amplification values of the HVSR spectra contributed 20% to 60% higher values. The vulnerability coefficients were calculated from the HVSR technique which gave valuesranging from 0,7 to 4,3 while the calculated vulnerability coefficients from the Cross Spectrum and Power Spectrum technique resulted ranging from 0,1 to 4,8. In general, it was observed that there was an increase in magnification values at high frequencies in both methods. The points where the soil amplification and vulnerability values are high are important in terms of showing the areas with high risk of structural damage in the event of an earthquake that will affect the city center of Burdur.

References

  • Delgado J, Lopez Casado C, Estevez A, Giner J, Cuenca A, Molina S.. 2000 Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool. Journal of Applied Geophysics;45(1):19e32.s.https://doi.org/10.101 6/S0926-9851(00)00016-1
  • Borcherdt, R.D. 1970,Effects of local geology on ground motion near San Francisco Bay.Bulletin of the Seismological Society of America60, 29–61. https://doi.org/10.1785/BSSA0600010029
  • Nakamura Y. 1996 “Real Time Information Systems for Seismic Hazards Mitigation UrEDAS, HERAS and PIC”, Railway Technical Research Institute, 37(3), 112-127.
  • Zaharia, B., Radulian, M., Popa, M., Grecu, B., Bala,A. and Tataru, D. 2008. “Estimation of the local response using the Nakamura method for theBucharest area. Romanian Report in Physics, Vol. 60, No. 1, P. 131-144.
  • Tuladhar, R. 2002 ”Seismic microzonation ofgreather Bangkok using microtremor. Thesis. Asian Institute of Technology, School of Civil Engineering, Thailand”
  • Semblat J F, Kham M, Bard P.Y. 2008.“Seismic wave propagation in alluvial basins and influence of sitecity interaction”, Bulletin of the Seismological Society of America, 98(6),2665-2678, https://doi.org/10.1785/0120080093
  • Bard, P. Y. 1999. Microtremor measurements: a tool for site effect estimation. The effects of surface geology on seismic motion, 3, 1251-1279.
  • Sylvette, B. C., Cécile, C., Pierre-Yves, B., Fabrice, C., Peter, M., Jozef, K., & Fäh, D. 2006 H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International, 167(2), 827-837. https://doi.org/10.1111/j.1365- 246X.2006.03154.
  • Bonnefoy-Claudet, S., Köhler, A., Cornou, C., Wathelet, M., & Bard, P. Y. 2008. Effects of Love waves on microtremor H/V ratio. Bulletin of the Seismological Society of America, 98(1), 288-300. https://doi.org/10.1785/0120070063
  • Woolery, E. W., & Street, R. 2002. 3D near-surface soil response from H/V ambient-noise ratios. Soil Dynamics and Earthquake Engineering, 22(9-12), 865-876. https://doi.org/10.1016/S0267- 7261(02)00109-4
  • Pilz M, Parolai S, Leyton F, Campos J, and J, Zschau J. 2009. A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile, Geophys. J. Int. 178, 713–728. https://doi.org/v10.1111/j.1365- 246X.2009.04195.
  • Pilz, M., Parolai, S., Stupazzini, M., Paolucci, R., & Zschau, J. 2011 Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code. Geophysical Journal International, 187(2), 929-945. https://doi.org/10.1111/j.1365- 246X.2011.05183.
  • Yassminh, R., Gallegos, A., Sandvol, E., & Ni, J. 2019. Investigation of the regional site response in the Central and Eastern United States. Bulletin of the Seismological Society of America, 109(3), 1005- 1024. https://doi.org/10.1785/0120180230
  • Borcherdt, R. D. 1992. Simplified site classes and empirical amplification factors for site-dependent code provisions. In Proc. NCEER, SEAOC, BSSC Workshop on Site Response during Earthquakes and Seismic Code Provisions (pp. 18-20). University of Southern California, Los Angeles, California.
  • Borcherdt, R. D. 1994. Estimates of site-dependent response spectra for design (methodology and justification). Earthquake spectra, 10(4), 617-653. https://doi.org/10.1193/1.1585791
  • Bekler, T., Demirci, A., Ekinci, Y. L., & Büyüksaraç, A. 2019. Analysis of local site conditions through geophysical parameters at a city under earthquake threat: Çanakkale, NW Turkey. Journal of applied geophysics, 163, 31-39. https://doi.org/10.1016/j.jappgeo.2019.02.009
  • Hartzell, S., Carver, D., & Williams, R. A. 2001. Site response, shallow shear-wave velocity, and damage in Los Gatos, California, from the 1989 Loma Prieta earthquake. Bulletin of the Seismological Society of America, 91(3), 468-478. https://doi.org/10.1785/0120000235
  • Boore, D. M. 2014. Ground-motion prediction equations: Past, present, and future. In 2014 Annual Meeting of the Seismological Society of America (Vol. 30).
  • Wald, L. A., & Mori, J. 2000. Evaluation of methods for estimating linear site-response amplifications in the Los Angeles region. Bulletin of the Seismological Society of America, 90(6B), S32-S42. https://doi.org/10.1785/0119970170
  • Mucciarelli M, Gallipoli, M. R. 2006 Comparison between Vs30 and other estimates of site amplification in Italy. In First European Conference on Earthquake Engineering and Seismology.
  • Hassani, B., & Atkinson, G. M. 2016. Applicability of the site fundamental frequency as a VS 30 proxy for central and eastern North America. Bulletin of the Seismological Society of America, 106(2), 653- 664. https://doi.org/10.1785/0120150259
  • Gürbüz, M. 2002 Avcılar Mikrobölgeleme Çalışmaları. Süleyman Demirel Ünivesitesi Jeofizik Mühendisliği Anabilim Dalı Yüksek Lisan Tezi, Isparta
  • Sugianto, N., Muhammad, F., & Wiwit, S. 2016. Local geology condition of bengkulu city based on seismic vulnerability index (Kg). ARPN Journal of Engineering and Applied Sciences, 11(7), 4797- 4803.
  • Mucciarelli, M., Gallipoli, M. R., & Arcieri, M. 2003. The stability of the horizontal-to-vertical spectral ratio of triggered noise and earthquake recordings. Bulletin of the Seismological Society of America, 93(3), 1407-1412. https://doi.org/10.1785/0120020213
  • Nakamura, Y. 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1).
  • Fäh, D., Kind, F., & Giardini, D. 2001. A theoretical investigation of average H/V ratios. Geophysical Journal International, 145(2), 535-549. https://doi.org/10.1046/j.0956- 540x.2001.01406
  • Bonnefoy-Claudet, S., Cotton, F., & Bard, P. Y. 2006. The nature of noise wavefield and its applications for site effects studies: A literature review. EarthScience Reviews, 79(3-4), 205-227. https://doi.org/10.1016/j.earscirev.2006.07.0 04
  • Över, S., Büyüksaraç, A., Bekta, Ö., & Filazi, A. 2011. Assessment of potential seismic hazard and site effect in Antakya (Hatay Province), SE Turkey. Environmental Earth Sciences, 62(2), 313-326. https://doi.org/10.1007/s12665-010-0525-3
  • Büyüksaraç, A., Bektaş, Ö., Yılmaz, H., & Arısoy, M. Ö. 2013. Preliminary seismic microzonation of Sivas city (Turkey) using microtremor and refraction microtremor (ReMi) measurements. Journal of seismology, 17(2), 425-435. https://doi.org/10.1007/s10950-012-9328-1
  • Büyüksaraç, A., Över, S., Geneş, M. C., Bikçe, M., Kacin, S., & Bektaş, Ö. 2014. Estimating shear wave velocity using acceleration data in Antakya (Turkey). Earth Sciences Research Journal, 18(2), 87-98.
  • Akkaya, İ. 2015. The application of HVSR microtremor survey method in Yüksekova (Hakkari) region, eastern Turkey. Journal of African Earth Sciences, 109, 87-95. https://doi.org/10.1016/j.jafrearsci.2015.05.018
  • FRY, D. E. 1970 The use of cross-correlation and power spectral techniques for the identification of the hunter MK. 12 dynamic response.Ministry Of Technology Aeronautical Research Councll Current Papers. C.P. 1121.
  • Ergin M, Özalaybey S, Ayçın M N, Aktar M. 2000.“Avcılar Yöresi Yer Büyütme Etkisinin Sismik Yöntemle Araştırılması”, Aktif tektonik Araştırma Grubu Dördüncü Toplantısı, p. 46, Eskişehir, Türkiye, 16-17 Kasım.
  • Yalcinkaya E, Alptekin O. 2002. “A preliminary study of site effects in Gölcük-Izmit Earthquake of 17 August 1999 (Mw = 7.4) in Turkey”, Istanbul Yerbilimleri Dergisi, 277–281.
  • Cranswick E, Özel O, Meremonte M, Erdik M, Şafak E, Mueller C, Overturr D and Frankel A. 2000. “Earthquake damage, Site Response, and Building Response in Avcilar, West of Istanbul, Turkey”, International Journal for Housing Science and Its Aplications, Special Issue: Kocaeli Earthquake 1999, 24(1), 85-96.
  • Ertunç A, Karagüzel R, Yağmurlu F, Türker AE, Keskin SN. 2001. “Burdur Belediyesi Kent Merkezi ve Yakın Çevresinin Yerleşime Uygunluk Açısından İncelenmesi”, Süleyman Demirel Üniversitesi Mühendislik Mimarlık Fakültesi Sonuç Raporu, Isparta, Türkiye.
  • DSİ. 2016. DSİ 18. Bölge Müdürlüğü, Burdur Göller Havzası Yeraltısuyu Planlama( Hidrojeolojik Etüt) Raporu Yapım İşi Nihayi Rapor”, Cilt 1,Isparta Türkiye.
  • Nakamura Y. 2000. “Clear Identification of Fundamental Idea of Nakamura’s Technique and Its Applications”, Proceedings of 12th World Conferance on Earthquake Engineering, New Zeland, Auckland Vol. 2656.
  • Kennaugh, E. M., & Moffatt, D. L. 1965. Transient and impulse response approximations. Proceedings of the IEEE, 53(8), 893-901. DOI: 10.1109/PROC.1965.4068
  • Box G E P, Jenkins G M. 1970 “Time Series Analysis Forecasting and Control”, San Francisco-HoldenDay, books.google.com.
  • Marco J.B. 1993 Armax and Transfer Function Modelling in Hydrology. In: Marco J.B., Harboe R., Salas J.D. (eds) Stochastic Hydrology and its Use in Water Resources Systems Simulation and Optimization. NATO ASI Series (Series E: Applied Sciences), vol 237. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1697-8_6
  • Remesan R, Mathew J .2015 ”Hydrological data driven modelling: a case study approach”, Of Earth Systems Data and Models, vol. 1, Springer International Publishing, Switzerland DOI:,10.1007/978-3-319-09235-5.
  • Besbes M, De Marsily G. From infiltration to recharge: use of a parametric transfer function, Journal of Hydrology, 74(3-4), 271-293 .DOI:10.1016/0022-1694(84)90019-2, 1984.
  • Gehrels J C, Van Geer F C, De Vries J J, 1994. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones J. Hydrol., 157,pp. 105- 138, DOI:10.1016/0022-1694(94)90101-5.
  • Stein, J. Y. 2000. Digital signal processing: a computer science perspective (p. 115). New York: Wiley. DOI:10.1002/047120059
  • Özdağ, Ö. C., & Gönenç, T. 2020. Modeling stratigraphic structure of Menemen Plain Izmir/Turkey by microgravity, passive seismic methods and examining its behavior under earthquake effect. Journal of Applied Geophysics, 182, 104175. https://doi.org/10.1016/j.jappgeo.2020.104175
There are 46 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Mustafa Gürbüz 0000-0001-8429-9465

Publication Date January 26, 2023
Published in Issue Year 2023

Cite

APA Gürbüz, M. (2023). Mikrotremor Verilerinde Çapraz Spektrum ve Güç Spektrumu Tekniği Kullanılarak Zemin Büyütmesinin Belirlenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(73), 37-53. https://doi.org/10.21205/deufmd.2023257304
AMA Gürbüz M. Mikrotremor Verilerinde Çapraz Spektrum ve Güç Spektrumu Tekniği Kullanılarak Zemin Büyütmesinin Belirlenmesi. DEUFMD. January 2023;25(73):37-53. doi:10.21205/deufmd.2023257304
Chicago Gürbüz, Mustafa. “Mikrotremor Verilerinde Çapraz Spektrum Ve Güç Spektrumu Tekniği Kullanılarak Zemin Büyütmesinin Belirlenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 73 (January 2023): 37-53. https://doi.org/10.21205/deufmd.2023257304.
EndNote Gürbüz M (January 1, 2023) Mikrotremor Verilerinde Çapraz Spektrum ve Güç Spektrumu Tekniği Kullanılarak Zemin Büyütmesinin Belirlenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 73 37–53.
IEEE M. Gürbüz, “Mikrotremor Verilerinde Çapraz Spektrum ve Güç Spektrumu Tekniği Kullanılarak Zemin Büyütmesinin Belirlenmesi”, DEUFMD, vol. 25, no. 73, pp. 37–53, 2023, doi: 10.21205/deufmd.2023257304.
ISNAD Gürbüz, Mustafa. “Mikrotremor Verilerinde Çapraz Spektrum Ve Güç Spektrumu Tekniği Kullanılarak Zemin Büyütmesinin Belirlenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/73 (January 2023), 37-53. https://doi.org/10.21205/deufmd.2023257304.
JAMA Gürbüz M. Mikrotremor Verilerinde Çapraz Spektrum ve Güç Spektrumu Tekniği Kullanılarak Zemin Büyütmesinin Belirlenmesi. DEUFMD. 2023;25:37–53.
MLA Gürbüz, Mustafa. “Mikrotremor Verilerinde Çapraz Spektrum Ve Güç Spektrumu Tekniği Kullanılarak Zemin Büyütmesinin Belirlenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 73, 2023, pp. 37-53, doi:10.21205/deufmd.2023257304.
Vancouver Gürbüz M. Mikrotremor Verilerinde Çapraz Spektrum ve Güç Spektrumu Tekniği Kullanılarak Zemin Büyütmesinin Belirlenmesi. DEUFMD. 2023;25(73):37-53.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.