Research Article
BibTex RIS Cite

Yakınsak-Konik Nozulların Giriş ve Çıkış Çaplarının İtme Kuvveti ve Hacimsel Debi Üzerindeki Etkisinin Teorik, Nümerik ve Deneysel İncelemesi

Year 2023, , 525 - 538, 27.09.2023
https://doi.org/10.21205/deufmd.2023257501

Abstract

Yakınsak konik tipi nozulları günlük hayattan roket bilimine kadar her yerde görmek mümkündür. Püskürtme için hava üfleme tabancaları, sıkıştırma için buhar türbinleri, itme üretimi için roketler ve irtifa kontrolü için uydular gibi birçok uygulamada tahrik sisteminin ana parçası olarak kullanılırlar. Bu çalışma, genellikle hava üflemeli tabancalarda kullanılan eksenel simetrik yakınsak-konik nozullara odaklanmaktadır. Literatürde, yakınsak-konik nozüller ile ilgili çalışmaların çoğu, Hesaplamalı Akışkanlar Dinamiği (CFD) simülasyonları ile sıkıştırılabilir akış üzerindeki yarım-konik açı etkilerini araştırmaktadır. Literatürde, aynı yarım açıya sahip bir nozül için giriş ve çıkış çapı değişiminin etkilerini birden fazla yaklaşımı karşılaştırarak inceleyen bir çalışmaya rastlanmamıştır. Bu nedenle, bu çalışmanın amacı, aynı koni-yarım açısına sahip yakınsak-konik nozüllerin farklı giriş ve çıkış çapları için itme ve hacimsel akış hızındaki değişiklikleri araştırmak ve teorik, sayısal ve deneysel sonuçları karşılaştırmaktır. Bu çalışmada, yakınsak konik nozullerin teorik olarak incelenmesi için yarı-tek boyutlu Euler denklemleri tanımlanmıştır. Ancak bu yaklaşımda viskoz kayıplar gibi birçok önemli özellik ihmal edilmektedir. Aslında, nozul akışları, sıkıştırılabilir etkilerden dolayı şok dalgaları, türbülans ve sınır tabakaları gibi oldukça karmaşık özelliklere sahiptir. Bu nedenle, bu çalışmada nozulun sayısal olarak incelenmesi için Ansys Fluent ile Hesaplamalı Akışkanlar Dinamiği (CFD) simülasyonları yapılmıştır. CFD simülasyonları, yakınsak konik tip nozul akışlarının daha iyi anlaşılmasını ve görselleştirilmesini sağlar. Üçüncü bir yaklaşım için, itme ve hacimsel akış hızı ölçümleri ile deneysel araştırma yapılmıştır. Teorik ve sayısal sonuçlar deneysel sonuçlarla karşılaştırılmış ve deneysel sonuca en yakın olanı bulmak için benzerlik oranları tanımlanmıştır.

References

  • [1] Boyanapalli, R., Vanukuri, R.S.R., Gogineni, P., Nookala, J., Yarlagadda, G.K., Gada, V. 2013. Analysis of Composite De-Laval Nozzle Suitable For Rocket Applications, International Journal of Innovative Technology and Exploring Engineering, 2, 336-344.
  • [2] Dalkiran, F.Y., Toraman, M. 2020. Predicting Thrust of Aircraft Using Artificial Neural Networks. Aircraft Engineering and Aerospace Technology, 93/1 35–41. DOI: 10.1108/AEAT-05-2020-0089.
  • [3] Hızarcı, B., Kıral, Z. 2019. Hava Jet İtkileri Kullanarak Mühendislik Yapilarinin Aktif Titreşim Kontrolü, Konya Mühendislik Bilimleri Dergisi, 933-947. DOI: 10.36306/konjes.624373
  • [4] Hizarci, B., Kiral, Z. 2022. Experimental Investigation Of Vibration Attenuation On A Cantilever Beam Using Air-Jet Pulses With The Particle Swarm Optimized Quasi Bang–Bang Controller, Journal of Vibration and Control, 28(1-2), 58-71. DOI: doi:10.1177/1077546320971160
  • [5] Dang Le, Q., Mereu, R., Besagni, G., Dossena, V., Inzoli, F. 2018. Computational Fluid Dynamics Modeling Of Flashing Flow In Convergent-Divergent Nozzle, Journal of Fluids Engineering, 140 (10). DOI: 10.1115/1.4039908
  • [6] Pathan, K.A., Dabeer, P.S., Khan, S.A. 2018. Optimization of Area Ratio and Thrust in Suddenly Expanded Flow At Supersonic Mach Numbers, Case Studies In Thermal Engineering, 12, 696-700. DOI: 10.1016/j.csite.2018.09.006
  • [7] Zhu, J., Elbel, S. 2020. CFD Simulation of Vortex Flashing R134a Flow Expanded Through Convergent-Divergent Nozzles, International Journal of Refrigeration, 112, 56-68. DOI: 10.1016/j.ijrefrig.2019.12.005
  • [8] Thornock, R.L., Brown, E.F. 1972. An Experimental Study of Compressible Flow Through Convergent-Conical Nozzles Including a Comparison With Theoretical Results, ASME Journal of Fluids Engineering, 94, pp. 926–930. DOI: 10.1115/1.3425591
  • [9] Spotts, N.G., Guzik, S., Gao, X. 2013. A CFD Analysis of Compressible Flow Through Convergent-Conical Nozzles. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 14 - 17, 2013, San Jose, CA, 3734.
  • [10] Su, C., Cheng, Y.H. 2018. Numerical and Experimental Research on Convergence Angle of Wet Sprayer Nozzle. Civil Engineering Journal, 4(9), 1985-1995.
  • [11] Sun, X.L., Wang, Z.X., Zhou, L., Liu, Z.W., Shi, J.W. 2016. Influences of Design Parameters on a Double Serpentine Convergent Nozzle, Journal of Engineering for Gas Turbines and Power, 138 (7). DOI: 10.1115/1.4032338
  • [12] Kumar, M., Sahoo, R.K., Behera, S.K. 2019. Design and Numerical Investigation To Visualize The Fluid Flow and Thermal Characteristics of Non-Axisymmetric Convergent Nozzle, Engineering Science and Technology, an International Journal, 22(1), 294-312. DOI: 10.1016/j.jestch.2018.10.006
  • [13] Alam, M.M.A., Setoguchi, T., Matsuo, S., Kim, H.D. 2016. Nozzle Geometry Variations On The Discharge Coefficient, Propulsion and Power Research, 5(1), 22-33. DOI: 10.1016/j.jppr.2016.01.002
  • [14] Payri, R., Tormos, B., Salvador, F.J., Araneo, L. 2008. Spray Droplet Velocity Characterization for Convergent Nozzles with Three Different Diameters, Fuel, 87(15-16), 3176-3182. DOI: 10.1016/j.fuel.2008.05.028
  • [15] Jiang, T., Huang, Z., Li, J., Zhou, Y., Xiong, C. 2022. Effect of Nozzle Geometry on the Flow Dynamics and Resistance Inside and Outside the Cone-Straight Nozzle. ACS omega, 7(11), 9652-9665. DOI: 10.1021/acsomega.1c07050
  • [16] Lakdawala H., Gupta A., Patel V., Jariwala H., Chaudhari G. 2022. Experimental Investigations of Jet Expansion for Hydraulic Nozzles of Different Materials, International Journal of Engineering Trends and Technology, vol. 70, no. 3, pp. 140-150. DOI: 10.14445/22315381/IJETT-V70I2P216
  • [17] Kubo, K., Miyazato, Y., Matsuo, K. 2010. Study of Choked Flows Through a Convergent Nozzle. Journal of Thermal Science, 19(3), 193-197. DOI: 10.1007/s11630-010-0193-3
  • [18] Martinez, I. n.d.. Nozzles. http://imartinez.etsiae.upm.es/~isidoro/bk3/c17/Nozzles.pdf. (Retrieved March 22, 2021).
  • [19] Yaravintelimath, A., Raghunandan, B.N., Moríñigo, J.A. 2016. Numerical Prediction of Nozzle Flow Separation: Issue of Turbulence Modeling, Aerospace Science and Technology, 50, 31-43. DOI: 10.1016/j.ast.2015.12.016
  • [20] Elmekawy, A.M.N. n.d.. SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 4 Compressible Flow through Convergent Conical Nozzle. https://drahmednagib.com/onewebmedia/SPC407/Fluent_Tutorial_Conical_Convergent_Nozzle.pdf (Retrieved July 05, 2022).
  • [21] SMC Nozzle datasheet. n.d., Blow Gun. https://static.smc.eu/pdf/VMG-F_EU.pdf. (Retrieved November 15, 2022).
  • [22] NASA. n.d.. Grids - Axisymmetric Subsonic Jet Case. https://turbmodels.larc.nasa.gov/jetsubsonic_grids.html (Retrieved July 05, 2022).
  • [23] Fluent, ANSYS. 2013. Ansys Fluent Theory Guide. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node167.htm (Retrieved July 05, 2022).
  • [24] NASA. n.d.. ASJ: Axisymmetric Subsonic Jet. https://turbmodels.larc.nasa.gov/jetsubsonic_val.html (Retrieved November 15, 2022).

Theoretical, Numerical and Experimental Investigation of the Inlet and Exit Diameter Effect of Convergent-Conical Nozzles on Thrust Force and Volumetric Flow Rate

Year 2023, , 525 - 538, 27.09.2023
https://doi.org/10.21205/deufmd.2023257501

Abstract

It is possible to see convergent conical type nozzles everywhere, from daily life to rocket science. They are utilized as the main part of the propulsion system in many applications such as air blow guns for spraying, steam turbines for compression, rockets for thrust generation, satellites for altitude control and so on. Although the convergent conical nozzle is a well-known nozzle, there are few studies on the effects of geometric changes by comparing more than one approach together. Therefore, this study investigates thrust and volumetric flow rate for different inlet and exit diameters of the convergent conical nozzles theoretically, numerically and experimentally. In this study, the quasi-one-dimensional Euler equations are defined for the theoretical investigation of convergent conical nozzles. However, in this approach, many important features such as viscous losses are neglected. In fact, nozzle flows have highly complex features including shock waves, turbulence, and boundary layers due to compressible effects. Thus, Computational Fluid Dynamic (CFD) simulations are performed with ANSYS Fluent for numerical investigation of the nozzle in this study. CFD simulations provide a better understanding and illustration of convergent conical type nozzle flows. For a third approach, the experimental investigation is conducted for thrust and volumetric flow rate measurements. Theoretical and numerical results are compared with the experimental results and similarity ratios are defined to find the closest to the experimental results.

References

  • [1] Boyanapalli, R., Vanukuri, R.S.R., Gogineni, P., Nookala, J., Yarlagadda, G.K., Gada, V. 2013. Analysis of Composite De-Laval Nozzle Suitable For Rocket Applications, International Journal of Innovative Technology and Exploring Engineering, 2, 336-344.
  • [2] Dalkiran, F.Y., Toraman, M. 2020. Predicting Thrust of Aircraft Using Artificial Neural Networks. Aircraft Engineering and Aerospace Technology, 93/1 35–41. DOI: 10.1108/AEAT-05-2020-0089.
  • [3] Hızarcı, B., Kıral, Z. 2019. Hava Jet İtkileri Kullanarak Mühendislik Yapilarinin Aktif Titreşim Kontrolü, Konya Mühendislik Bilimleri Dergisi, 933-947. DOI: 10.36306/konjes.624373
  • [4] Hizarci, B., Kiral, Z. 2022. Experimental Investigation Of Vibration Attenuation On A Cantilever Beam Using Air-Jet Pulses With The Particle Swarm Optimized Quasi Bang–Bang Controller, Journal of Vibration and Control, 28(1-2), 58-71. DOI: doi:10.1177/1077546320971160
  • [5] Dang Le, Q., Mereu, R., Besagni, G., Dossena, V., Inzoli, F. 2018. Computational Fluid Dynamics Modeling Of Flashing Flow In Convergent-Divergent Nozzle, Journal of Fluids Engineering, 140 (10). DOI: 10.1115/1.4039908
  • [6] Pathan, K.A., Dabeer, P.S., Khan, S.A. 2018. Optimization of Area Ratio and Thrust in Suddenly Expanded Flow At Supersonic Mach Numbers, Case Studies In Thermal Engineering, 12, 696-700. DOI: 10.1016/j.csite.2018.09.006
  • [7] Zhu, J., Elbel, S. 2020. CFD Simulation of Vortex Flashing R134a Flow Expanded Through Convergent-Divergent Nozzles, International Journal of Refrigeration, 112, 56-68. DOI: 10.1016/j.ijrefrig.2019.12.005
  • [8] Thornock, R.L., Brown, E.F. 1972. An Experimental Study of Compressible Flow Through Convergent-Conical Nozzles Including a Comparison With Theoretical Results, ASME Journal of Fluids Engineering, 94, pp. 926–930. DOI: 10.1115/1.3425591
  • [9] Spotts, N.G., Guzik, S., Gao, X. 2013. A CFD Analysis of Compressible Flow Through Convergent-Conical Nozzles. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 14 - 17, 2013, San Jose, CA, 3734.
  • [10] Su, C., Cheng, Y.H. 2018. Numerical and Experimental Research on Convergence Angle of Wet Sprayer Nozzle. Civil Engineering Journal, 4(9), 1985-1995.
  • [11] Sun, X.L., Wang, Z.X., Zhou, L., Liu, Z.W., Shi, J.W. 2016. Influences of Design Parameters on a Double Serpentine Convergent Nozzle, Journal of Engineering for Gas Turbines and Power, 138 (7). DOI: 10.1115/1.4032338
  • [12] Kumar, M., Sahoo, R.K., Behera, S.K. 2019. Design and Numerical Investigation To Visualize The Fluid Flow and Thermal Characteristics of Non-Axisymmetric Convergent Nozzle, Engineering Science and Technology, an International Journal, 22(1), 294-312. DOI: 10.1016/j.jestch.2018.10.006
  • [13] Alam, M.M.A., Setoguchi, T., Matsuo, S., Kim, H.D. 2016. Nozzle Geometry Variations On The Discharge Coefficient, Propulsion and Power Research, 5(1), 22-33. DOI: 10.1016/j.jppr.2016.01.002
  • [14] Payri, R., Tormos, B., Salvador, F.J., Araneo, L. 2008. Spray Droplet Velocity Characterization for Convergent Nozzles with Three Different Diameters, Fuel, 87(15-16), 3176-3182. DOI: 10.1016/j.fuel.2008.05.028
  • [15] Jiang, T., Huang, Z., Li, J., Zhou, Y., Xiong, C. 2022. Effect of Nozzle Geometry on the Flow Dynamics and Resistance Inside and Outside the Cone-Straight Nozzle. ACS omega, 7(11), 9652-9665. DOI: 10.1021/acsomega.1c07050
  • [16] Lakdawala H., Gupta A., Patel V., Jariwala H., Chaudhari G. 2022. Experimental Investigations of Jet Expansion for Hydraulic Nozzles of Different Materials, International Journal of Engineering Trends and Technology, vol. 70, no. 3, pp. 140-150. DOI: 10.14445/22315381/IJETT-V70I2P216
  • [17] Kubo, K., Miyazato, Y., Matsuo, K. 2010. Study of Choked Flows Through a Convergent Nozzle. Journal of Thermal Science, 19(3), 193-197. DOI: 10.1007/s11630-010-0193-3
  • [18] Martinez, I. n.d.. Nozzles. http://imartinez.etsiae.upm.es/~isidoro/bk3/c17/Nozzles.pdf. (Retrieved March 22, 2021).
  • [19] Yaravintelimath, A., Raghunandan, B.N., Moríñigo, J.A. 2016. Numerical Prediction of Nozzle Flow Separation: Issue of Turbulence Modeling, Aerospace Science and Technology, 50, 31-43. DOI: 10.1016/j.ast.2015.12.016
  • [20] Elmekawy, A.M.N. n.d.. SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 4 Compressible Flow through Convergent Conical Nozzle. https://drahmednagib.com/onewebmedia/SPC407/Fluent_Tutorial_Conical_Convergent_Nozzle.pdf (Retrieved July 05, 2022).
  • [21] SMC Nozzle datasheet. n.d., Blow Gun. https://static.smc.eu/pdf/VMG-F_EU.pdf. (Retrieved November 15, 2022).
  • [22] NASA. n.d.. Grids - Axisymmetric Subsonic Jet Case. https://turbmodels.larc.nasa.gov/jetsubsonic_grids.html (Retrieved July 05, 2022).
  • [23] Fluent, ANSYS. 2013. Ansys Fluent Theory Guide. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node167.htm (Retrieved July 05, 2022).
  • [24] NASA. n.d.. ASJ: Axisymmetric Subsonic Jet. https://turbmodels.larc.nasa.gov/jetsubsonic_val.html (Retrieved November 15, 2022).
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Berkan Hızarcı 0000-0002-9685-5198

Zeki Kıral 0000-0002-9154-0509

Early Pub Date September 16, 2023
Publication Date September 27, 2023
Published in Issue Year 2023

Cite

APA Hızarcı, B., & Kıral, Z. (2023). Theoretical, Numerical and Experimental Investigation of the Inlet and Exit Diameter Effect of Convergent-Conical Nozzles on Thrust Force and Volumetric Flow Rate. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(75), 525-538. https://doi.org/10.21205/deufmd.2023257501
AMA Hızarcı B, Kıral Z. Theoretical, Numerical and Experimental Investigation of the Inlet and Exit Diameter Effect of Convergent-Conical Nozzles on Thrust Force and Volumetric Flow Rate. DEUFMD. September 2023;25(75):525-538. doi:10.21205/deufmd.2023257501
Chicago Hızarcı, Berkan, and Zeki Kıral. “Theoretical, Numerical and Experimental Investigation of the Inlet and Exit Diameter Effect of Convergent-Conical Nozzles on Thrust Force and Volumetric Flow Rate”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 75 (September 2023): 525-38. https://doi.org/10.21205/deufmd.2023257501.
EndNote Hızarcı B, Kıral Z (September 1, 2023) Theoretical, Numerical and Experimental Investigation of the Inlet and Exit Diameter Effect of Convergent-Conical Nozzles on Thrust Force and Volumetric Flow Rate. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 75 525–538.
IEEE B. Hızarcı and Z. Kıral, “Theoretical, Numerical and Experimental Investigation of the Inlet and Exit Diameter Effect of Convergent-Conical Nozzles on Thrust Force and Volumetric Flow Rate”, DEUFMD, vol. 25, no. 75, pp. 525–538, 2023, doi: 10.21205/deufmd.2023257501.
ISNAD Hızarcı, Berkan - Kıral, Zeki. “Theoretical, Numerical and Experimental Investigation of the Inlet and Exit Diameter Effect of Convergent-Conical Nozzles on Thrust Force and Volumetric Flow Rate”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/75 (September 2023), 525-538. https://doi.org/10.21205/deufmd.2023257501.
JAMA Hızarcı B, Kıral Z. Theoretical, Numerical and Experimental Investigation of the Inlet and Exit Diameter Effect of Convergent-Conical Nozzles on Thrust Force and Volumetric Flow Rate. DEUFMD. 2023;25:525–538.
MLA Hızarcı, Berkan and Zeki Kıral. “Theoretical, Numerical and Experimental Investigation of the Inlet and Exit Diameter Effect of Convergent-Conical Nozzles on Thrust Force and Volumetric Flow Rate”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 75, 2023, pp. 525-38, doi:10.21205/deufmd.2023257501.
Vancouver Hızarcı B, Kıral Z. Theoretical, Numerical and Experimental Investigation of the Inlet and Exit Diameter Effect of Convergent-Conical Nozzles on Thrust Force and Volumetric Flow Rate. DEUFMD. 2023;25(75):525-38.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.