Research Article
BibTex RIS Cite

Sliding Mode-based Traction Control System Design for Electric Scooter BLDCM through Field-Oriented Vector Control Approach

Year 2023, Volume: 25 Issue: 74, 433 - 450, 15.05.2023
https://doi.org/10.21205/deufmd.2023257414

Abstract

Nowadays brushless DC motors (BLDCMs) are becoming indispensable components as the electrification revolution in the mobility industry is happening. Electric kick scooters, so-called e-scooters, are among these micro-mobility vehicles which are powered by these motors. Due to the uncertain and nonlinear features, the controller performance developed for these motors degrades. For these reasons, a chattering-reduced cascaded Sliding Mode Control (SMC) scheme to effectively track reference motor speed in the outer loop by eliminating torque ripples in the inner loop current control was designed. Field-oriented Control (FOC) methodology was used to implement the SMC in the BLDCM. An exponential reaching law algorithm was proposed for sliding surfaces of the inner and outer loop controllers. The suitability and performance of electric scooter-hub motors were analyzed in terms of traction control. A cascaded speed and torque controller produced significantly favorable results representing minimized torque and current ripples, and operation over a wide speed range.

Supporting Institution

Micro-Mobility Department, FİGES AŞ., Bursa, Turkey

Thanks

The authors would like to acknowledge the support of software and hardware infrastructures rendered by FIGES Inc.

References

  • [1] Lowry, J., Larminie, J. 2012. Electric Vehicle Technology explained. Wiley.
  • [2] Ehsani, M., Gao, Y., Longo, S., Ebrahimi, K. 2019. Modern electric, hybrid electric, and fuel cell vehicles. Boca Raton: CRC Press/Taylor & Francis Group.
  • [3] Chan, C., Bouscayrol, A., Chen, K. 2010. Electric, Hybrid, and Fuel-Cell Vehicles: Architectures and Modeling. IEEE Transactions on Vehicular Technology, Vol. 59, s. 589-598.
  • [4] Khayyam, H., Bab-Hadiashar, A. 2014. Adaptive intelligent energy management system of plug-in hybrid electric vehicle, Energy, Vol. 69, s. 319-335.
  • [5] Kamichi, K., Yamamoto, M., Fushiki, S., Yoda, T., Kurachi, S., Kojima, K. 2012. Development of Plug-In Hybrid System for Midsize Car. SAE Technical Paper Series.
  • [6] Aziz, M. 2017. Advanced Charging System for Plug-in Hybrid Electric Vehicles and Battery Electric Vehicles. Hybrid Electric Vehicles.
  • [7] Luigi, F., Tarsitano, D. 2012. Modeling of Full Electric and Hybrid Electric Vehicles. New Generation of Electric Vehicles.
  • [8] Sergaki, E. S. 2012. Electric motor efficiency optimization as applied to electric vehicles. International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion.
  • [9] Sha, L., Du, Q. 2011. Sensorless Control Technique for BLDCM. 2011 International Conference on Control, Automation and Systems Engineering (CASE).
  • [10] Krishnan, R. 2017. Sensorless Control of PMBDCM Drive. Permanent Magnet Synchronous and Brushless DC Motor Drives, 555-560.
  • [11] Gamazo-Real, J. C., Vázquez-Sánchez, E., Gómez-Gil, J. 2010. Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends, Sensors, Vol. 10, s. 6901-6947.
  • [12] Zhang, Z. 2019. Robust Stator-Excited Brushless Synchronous Machine: An Attractive Permanent Magnet-Free Option. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS).
  • [13] Diab, H., Amara, Y., Hlioui, S., Paulides, J. J. 2021. Design and Realization of a Hybrid Excited Flux Switching Vernier Machine for Renewable Energy Conversion, Energies, Vol. 14, s. 6060.
  • [14] Jayal, P., Bhuvaneswari, G. 2018. Vector control of permanent magnet synchronous motor drive using a reduced switch five-level inverter. IEEMA Engineer Infinite Conference (eTechNxT).
  • [15] Kong, H., Cui, G., Zheng, A. 2010. Field-Weakening Speed Extension of BLDCM Based on Instantaneous Power Theory. International Conference on Electrical and Control Engineering.
  • [16] Song, P. Y., Zhang, J. Y., Zhang, K. Y. 2010. Simulation of BLDCM Speed Control System Based on PI Controller with Fuzzy Parameter Regulators, Applied Mechanics and Materials, Vol. 29, s. 841-846.
  • [17] Li, W., Wu, A., Wang, Y., Dong, N. 2016. Direct torque control for BLDCM based on optimized sliding mode observer. 12th World Congress on Intelligent Control and Automation (WCICA).
  • [18] Il, K. G., Seung, H. M., Hak, Y. S., Cheol, L. Y. 2009. The study on BLDC motor compressor using SMC. IEEE 6th International Power Electronics and Motion Control Conference.
  • [19] Shao, Y., Yang, R., Guo, J., Fu, Y. 2015. Sliding mode speed control for brushless DC motor based on sliding mode torque observer. IEEE International Conference on Information and Automation.
  • [20] Hafez, A. T., Sarhan, A. A., Givigi, S. 2019. Brushless DC Motor Speed Control Based on Advanced Sliding Mode Control (SMC) Techniques. IEEE International Systems Conference (SysCon).
  • [21] Alanis, A. Y., Munoz-Gomez, G., Rivera, J. 2020. Nested High Order Sliding Mode Controller with Back-EMF Sliding Mode Observer for a Brushless Direct Current Motor, Electronics, Vol. 9, s.1041.
  • [22] Mohd Zaihidee, F., Mekhilef, S., Mubin, M. 2019. Robust speed control of PMSM using sliding mode control (SMC)—a review, Energies, Vol. 12, s. 1669. DOI: 10.3390/en12091669
  • [23] Gu, D., Zhang, J., Gu, J. 2015. Brushless DC motor speed control based on predictive functional control. The 27th Chinese Control and Decision Conference (CCDC).
  • [24] Qingchao, Z., Ruiqing, M., Junjun, D., Ben, Z. A cascade first and second order sliding mode control approach for speed control of brushless DC motor. 34th Chinese Control Conference (CCC).
  • [25] Renken, F. 2010. Multiphase DC/DC converters for hybrid electric vehicles. Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC. DOI: 10.1109/epepemc.2010.5606634
  • [26] Yilmaz, M. 2015. Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications, Renewable and Sustainable Energy Reviews, Vol. 52, s. 80–99. DOI: 10.1016/j.rser.2015.07.033
  • [27] Umemura, C. 2001. Development of switched reluctance motor for EV traction system, SAE Technical Paper Series. DOI: 10.4271/2001-01-0957
  • [28] Ying Fan, Chau, K. T. 2005. Design, modeling and analysis of a brushless doubly-fed doubly-salient machine for Electric Vehicles. Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference. DOI: 10.1109/ias.2005.1518843
  • [29] Zarifyan, A., Zarifyan, A., Grebennikov, N., Talakhadze, T., Romanchenko, N., Shapshal, A. 2019. Increasing the energy efficiency of rail vehicles equipped with a multi-motor electrical traction drive. 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED). DOI: 10.1109/iwed.2019.8664283
  • [30] Wu, H., Zhang, H. 2015. Model-based design and evaluation of Electric Vehicle Powertrain with independent driving motors. Volume 3: 17th International Conference on Advanced Vehicle Technologies; 12th International Conference on Design Education; 8th Frontiers in Biomedical Devices. DOI: 10.1115/detc2015-47980
  • [31] Cheng, H., Wang, L., Han, G., Chen, H. 2019. The design and control of an electrified powertrain with switched reluctance machines for series Hybrid Electric Vehicle. IEEE Vehicle Power and Propulsion Conference (VPPC). DOI:10.1109/vppc46532.2019.8952429 [32] Rahman, K. M., Schulz, S. E. 2001. Design of high efficiency and high density switched reluctance motor for vehicle propulsion. Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248). DOI: 10.1109/ias.2001.955916
  • [33] Hayes, J. G., Goodarzi, G. A. 2018. Electric Powertrain: Energy Systems, Power Electronics and drives for hybrid, electric and Fuel Cell vehicles. John Wiley & Sons.
  • [34] Bucherl, D., Nuscheler, R., Meyer, W., Herzog, H.G. 2008. Comparison of electrical machine types in hybrid drive trains: Induction Machine vs. permanent magnet synchronous machine. 2008 18th International Conference on Electrical Machines. DOI: 10.1109/icelmach.2008.4800155
  • [35] Cheng, R., Dong, Z. 2015. Modeling and simulation of plug-in hybrid electric powertrain system for different vehicular application. 2015 IEEE Vehicle Power and Propulsion Conference (VPPC). DOI: 10.1109/vppc.2015.7352976
  • [36] Lv, C., Zhang, J. 2011. Research of parameter design and matching of powertrain system in plug-in hybrid electric vehicle. International Conference on Electric Information and Control Engineering.
  • [37] Zeng, X., Peng, Y., Song, D. 2014. Powertrain parameter matching of a plug-in hybrid electric vehicle. IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific).
  • [38] Kang, H., Dandan, Z. 2013. Study on Driving Motor of Pure Electric Vehicles Based on Urban Road Conditions. International Conference on Communication Systems and Network Technologies.
  • [39] Pellegrino, G., Vagati, A., Boazzo, B., Guglielmi, P. 2012. Comparison of induction and PM synchronous motor drives for EV application including design examples. IEEE Transactions on Industry Applications, Vol. 48, s. 2322–2332. DOI: 10.1109/tia.2012.2227092
  • [40] Kim, S. A., Byun, S. I., Cho, Y. H. 2015. A study on the advanced twelve step sensor-less control of BLDCM using FOC. Proceedings of the International Conference on Computer Information Systems and Industrial Applications. DOI: 10.2991/cisia-15.2015.49
  • [41] Lianbing, L., Hui, J., Liqiang, Z., Hexu, S. 2009. Study on Torque Ripple Attenuation for BLDCM Based on Vector Control Method. Second International Conference on Intelligent Networks and Intelligent Systems.
  • [42] Adiguzel, F., Turker, T. 2017. A switching adaptive current controller for BLDCM drives. 21st International Conference on System Theory, Control and Computing (ICSTCC).
  • [43] Gadgune, S. Y., Waware, M. M. 2014. A novel control strategy for capacitor voltage regulation of Unified Power Quality Conditioner using Integral plus Sliding Mode Controller. International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014].
  • [44] Uyulan, C. 2019. A robust-adaptive linearizing control method for sensorless high precision control of induction motor. Measurement and Control, Vol. 52, s. 634–656. DOI: 10.1177/0020294019833072
  • [45] Raisemche, A., Chaibet, A., Boukhnifer, M., Diallo, D. 2016. Mechanical sensor FTC using sub-optimal sliding mode observer for electrical vehicle induction motor drive. 13th International Multi-Conference on Systems, Signals & Devices (SSD).
  • [46] Zhou, W., Zhang, X. 2016. Double closed loop sliding mode PID control system for BLDCM of pure electric vehicle. 35th Chinese Control Conference (CCC).
  • [47] Vido, L., Amara, Y., Gabsi, M., Lecrivain, M., & Chabot, F. 2005. Compared performances of homopolar and bipolar hybrid excitation synchronous machines. Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005.
  • [48] Adıgüzel, F., & Türker, T. 2022. A periodic adaptive controller for the torque loop of variable speed brushless DC motor drives with non-ideal back-electromotive force. Automatika, 63(4), 732–744. DOI: 10.1080/00051144.2022.2065802
  • [49] Mohanraj, D., Aruldavid, R., Verma, R., Sathiyasekar, K., Barnawi, A. B., Chokkalingam, B., & Mihet-Popa, L. 2022. A review of BLDC Motor: State of Art, advanced control techniques, and applications. IEEE Access, 10,5483354869. DOI: 0.1109/access.2022.3175011
  • [50] Kadhim, Q. S., Abbas, A. H., & Ali, M. M. 2022. Optimized speed control with torque ripple reductions of BLDC motor based on SMC approach using LFD algorithm. International Journal of Power Electronics and Drive Systems (IJPEDS), 13(3), 1305. DOI: 10.11591/ijpeds.v13.i3.pp1305-1314

Alan Odaklı Vektör Kontrol Yaklaşımı ile Elektrikli Scooter BLDCM için Kayan Kip Tabanlı Çekiş Kontrol Sistemi Tasarımı

Year 2023, Volume: 25 Issue: 74, 433 - 450, 15.05.2023
https://doi.org/10.21205/deufmd.2023257414

Abstract

Günümüzde fırçasız doğru akım motorlar (FDAM'ler), mobilite endüstrisinde elektrifikasyon devrimi yaşanırken vazgeçilmez bileşenler haline gelmektedir. Bu motorlarla çalışan mikro-mobilite araçları arasında e-scooter olarak adlandırılan elektrikli kick scooter'lar da yer almaktadır. Yol ve sürüş koşullarına sonucu oluşan belirsiz ve doğrusal olmayan şartlar nedeniyle, bu motorlar için geliştirilen kontrolcülerin performansları düşmektedir. Bu sebeple, iç döngüdeki tork dalgalanmalarını ortadan kaldırmak ve dış döngüdeki referans motor hızını etkin bir şekilde izlemek için kesikli geçiş (chattering) azaltılmış kademeli Kayan Kip Kontrolü (KKK) şeması döngü akım kontrolü tasarlanmıştır. KKK'yi FDAM'ye uygulamak için Alan Odaklı Kontrol (AOK) metodolojisi kullanılmıştır. İç ve dış döngü kontrolcülerin kayan yüzeyleri için üstel erişim yasası algoritması önerilmiştir. Elektrikli scooter-hub motorlarının çekiş kontrolü açısından uygunluğu ve performansı analiz edilmiştir. Söz konusu çalışmada geliştirilen kademeli hız ve tork kontrolcüler, geniş bir hız aralığında minimum tork ve akım dalgalanmalarını temsil eden benzetim senaryoları için olumlu sonuçlar üretmiştir.

References

  • [1] Lowry, J., Larminie, J. 2012. Electric Vehicle Technology explained. Wiley.
  • [2] Ehsani, M., Gao, Y., Longo, S., Ebrahimi, K. 2019. Modern electric, hybrid electric, and fuel cell vehicles. Boca Raton: CRC Press/Taylor & Francis Group.
  • [3] Chan, C., Bouscayrol, A., Chen, K. 2010. Electric, Hybrid, and Fuel-Cell Vehicles: Architectures and Modeling. IEEE Transactions on Vehicular Technology, Vol. 59, s. 589-598.
  • [4] Khayyam, H., Bab-Hadiashar, A. 2014. Adaptive intelligent energy management system of plug-in hybrid electric vehicle, Energy, Vol. 69, s. 319-335.
  • [5] Kamichi, K., Yamamoto, M., Fushiki, S., Yoda, T., Kurachi, S., Kojima, K. 2012. Development of Plug-In Hybrid System for Midsize Car. SAE Technical Paper Series.
  • [6] Aziz, M. 2017. Advanced Charging System for Plug-in Hybrid Electric Vehicles and Battery Electric Vehicles. Hybrid Electric Vehicles.
  • [7] Luigi, F., Tarsitano, D. 2012. Modeling of Full Electric and Hybrid Electric Vehicles. New Generation of Electric Vehicles.
  • [8] Sergaki, E. S. 2012. Electric motor efficiency optimization as applied to electric vehicles. International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion.
  • [9] Sha, L., Du, Q. 2011. Sensorless Control Technique for BLDCM. 2011 International Conference on Control, Automation and Systems Engineering (CASE).
  • [10] Krishnan, R. 2017. Sensorless Control of PMBDCM Drive. Permanent Magnet Synchronous and Brushless DC Motor Drives, 555-560.
  • [11] Gamazo-Real, J. C., Vázquez-Sánchez, E., Gómez-Gil, J. 2010. Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends, Sensors, Vol. 10, s. 6901-6947.
  • [12] Zhang, Z. 2019. Robust Stator-Excited Brushless Synchronous Machine: An Attractive Permanent Magnet-Free Option. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS).
  • [13] Diab, H., Amara, Y., Hlioui, S., Paulides, J. J. 2021. Design and Realization of a Hybrid Excited Flux Switching Vernier Machine for Renewable Energy Conversion, Energies, Vol. 14, s. 6060.
  • [14] Jayal, P., Bhuvaneswari, G. 2018. Vector control of permanent magnet synchronous motor drive using a reduced switch five-level inverter. IEEMA Engineer Infinite Conference (eTechNxT).
  • [15] Kong, H., Cui, G., Zheng, A. 2010. Field-Weakening Speed Extension of BLDCM Based on Instantaneous Power Theory. International Conference on Electrical and Control Engineering.
  • [16] Song, P. Y., Zhang, J. Y., Zhang, K. Y. 2010. Simulation of BLDCM Speed Control System Based on PI Controller with Fuzzy Parameter Regulators, Applied Mechanics and Materials, Vol. 29, s. 841-846.
  • [17] Li, W., Wu, A., Wang, Y., Dong, N. 2016. Direct torque control for BLDCM based on optimized sliding mode observer. 12th World Congress on Intelligent Control and Automation (WCICA).
  • [18] Il, K. G., Seung, H. M., Hak, Y. S., Cheol, L. Y. 2009. The study on BLDC motor compressor using SMC. IEEE 6th International Power Electronics and Motion Control Conference.
  • [19] Shao, Y., Yang, R., Guo, J., Fu, Y. 2015. Sliding mode speed control for brushless DC motor based on sliding mode torque observer. IEEE International Conference on Information and Automation.
  • [20] Hafez, A. T., Sarhan, A. A., Givigi, S. 2019. Brushless DC Motor Speed Control Based on Advanced Sliding Mode Control (SMC) Techniques. IEEE International Systems Conference (SysCon).
  • [21] Alanis, A. Y., Munoz-Gomez, G., Rivera, J. 2020. Nested High Order Sliding Mode Controller with Back-EMF Sliding Mode Observer for a Brushless Direct Current Motor, Electronics, Vol. 9, s.1041.
  • [22] Mohd Zaihidee, F., Mekhilef, S., Mubin, M. 2019. Robust speed control of PMSM using sliding mode control (SMC)—a review, Energies, Vol. 12, s. 1669. DOI: 10.3390/en12091669
  • [23] Gu, D., Zhang, J., Gu, J. 2015. Brushless DC motor speed control based on predictive functional control. The 27th Chinese Control and Decision Conference (CCDC).
  • [24] Qingchao, Z., Ruiqing, M., Junjun, D., Ben, Z. A cascade first and second order sliding mode control approach for speed control of brushless DC motor. 34th Chinese Control Conference (CCC).
  • [25] Renken, F. 2010. Multiphase DC/DC converters for hybrid electric vehicles. Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC. DOI: 10.1109/epepemc.2010.5606634
  • [26] Yilmaz, M. 2015. Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications, Renewable and Sustainable Energy Reviews, Vol. 52, s. 80–99. DOI: 10.1016/j.rser.2015.07.033
  • [27] Umemura, C. 2001. Development of switched reluctance motor for EV traction system, SAE Technical Paper Series. DOI: 10.4271/2001-01-0957
  • [28] Ying Fan, Chau, K. T. 2005. Design, modeling and analysis of a brushless doubly-fed doubly-salient machine for Electric Vehicles. Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference. DOI: 10.1109/ias.2005.1518843
  • [29] Zarifyan, A., Zarifyan, A., Grebennikov, N., Talakhadze, T., Romanchenko, N., Shapshal, A. 2019. Increasing the energy efficiency of rail vehicles equipped with a multi-motor electrical traction drive. 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED). DOI: 10.1109/iwed.2019.8664283
  • [30] Wu, H., Zhang, H. 2015. Model-based design and evaluation of Electric Vehicle Powertrain with independent driving motors. Volume 3: 17th International Conference on Advanced Vehicle Technologies; 12th International Conference on Design Education; 8th Frontiers in Biomedical Devices. DOI: 10.1115/detc2015-47980
  • [31] Cheng, H., Wang, L., Han, G., Chen, H. 2019. The design and control of an electrified powertrain with switched reluctance machines for series Hybrid Electric Vehicle. IEEE Vehicle Power and Propulsion Conference (VPPC). DOI:10.1109/vppc46532.2019.8952429 [32] Rahman, K. M., Schulz, S. E. 2001. Design of high efficiency and high density switched reluctance motor for vehicle propulsion. Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248). DOI: 10.1109/ias.2001.955916
  • [33] Hayes, J. G., Goodarzi, G. A. 2018. Electric Powertrain: Energy Systems, Power Electronics and drives for hybrid, electric and Fuel Cell vehicles. John Wiley & Sons.
  • [34] Bucherl, D., Nuscheler, R., Meyer, W., Herzog, H.G. 2008. Comparison of electrical machine types in hybrid drive trains: Induction Machine vs. permanent magnet synchronous machine. 2008 18th International Conference on Electrical Machines. DOI: 10.1109/icelmach.2008.4800155
  • [35] Cheng, R., Dong, Z. 2015. Modeling and simulation of plug-in hybrid electric powertrain system for different vehicular application. 2015 IEEE Vehicle Power and Propulsion Conference (VPPC). DOI: 10.1109/vppc.2015.7352976
  • [36] Lv, C., Zhang, J. 2011. Research of parameter design and matching of powertrain system in plug-in hybrid electric vehicle. International Conference on Electric Information and Control Engineering.
  • [37] Zeng, X., Peng, Y., Song, D. 2014. Powertrain parameter matching of a plug-in hybrid electric vehicle. IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific).
  • [38] Kang, H., Dandan, Z. 2013. Study on Driving Motor of Pure Electric Vehicles Based on Urban Road Conditions. International Conference on Communication Systems and Network Technologies.
  • [39] Pellegrino, G., Vagati, A., Boazzo, B., Guglielmi, P. 2012. Comparison of induction and PM synchronous motor drives for EV application including design examples. IEEE Transactions on Industry Applications, Vol. 48, s. 2322–2332. DOI: 10.1109/tia.2012.2227092
  • [40] Kim, S. A., Byun, S. I., Cho, Y. H. 2015. A study on the advanced twelve step sensor-less control of BLDCM using FOC. Proceedings of the International Conference on Computer Information Systems and Industrial Applications. DOI: 10.2991/cisia-15.2015.49
  • [41] Lianbing, L., Hui, J., Liqiang, Z., Hexu, S. 2009. Study on Torque Ripple Attenuation for BLDCM Based on Vector Control Method. Second International Conference on Intelligent Networks and Intelligent Systems.
  • [42] Adiguzel, F., Turker, T. 2017. A switching adaptive current controller for BLDCM drives. 21st International Conference on System Theory, Control and Computing (ICSTCC).
  • [43] Gadgune, S. Y., Waware, M. M. 2014. A novel control strategy for capacitor voltage regulation of Unified Power Quality Conditioner using Integral plus Sliding Mode Controller. International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014].
  • [44] Uyulan, C. 2019. A robust-adaptive linearizing control method for sensorless high precision control of induction motor. Measurement and Control, Vol. 52, s. 634–656. DOI: 10.1177/0020294019833072
  • [45] Raisemche, A., Chaibet, A., Boukhnifer, M., Diallo, D. 2016. Mechanical sensor FTC using sub-optimal sliding mode observer for electrical vehicle induction motor drive. 13th International Multi-Conference on Systems, Signals & Devices (SSD).
  • [46] Zhou, W., Zhang, X. 2016. Double closed loop sliding mode PID control system for BLDCM of pure electric vehicle. 35th Chinese Control Conference (CCC).
  • [47] Vido, L., Amara, Y., Gabsi, M., Lecrivain, M., & Chabot, F. 2005. Compared performances of homopolar and bipolar hybrid excitation synchronous machines. Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005.
  • [48] Adıgüzel, F., & Türker, T. 2022. A periodic adaptive controller for the torque loop of variable speed brushless DC motor drives with non-ideal back-electromotive force. Automatika, 63(4), 732–744. DOI: 10.1080/00051144.2022.2065802
  • [49] Mohanraj, D., Aruldavid, R., Verma, R., Sathiyasekar, K., Barnawi, A. B., Chokkalingam, B., & Mihet-Popa, L. 2022. A review of BLDC Motor: State of Art, advanced control techniques, and applications. IEEE Access, 10,5483354869. DOI: 0.1109/access.2022.3175011
  • [50] Kadhim, Q. S., Abbas, A. H., & Ali, M. M. 2022. Optimized speed control with torque ripple reductions of BLDC motor based on SMC approach using LFD algorithm. International Journal of Power Electronics and Drive Systems (IJPEDS), 13(3), 1305. DOI: 10.11591/ijpeds.v13.i3.pp1305-1314
There are 49 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Caglar Uyulan 0000-0002-6423-6720

Ersen Arslan 0000-0001-9594-2372

Early Pub Date May 12, 2023
Publication Date May 15, 2023
Published in Issue Year 2023 Volume: 25 Issue: 74

Cite

APA Uyulan, C., & Arslan, E. (2023). Sliding Mode-based Traction Control System Design for Electric Scooter BLDCM through Field-Oriented Vector Control Approach. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 25(74), 433-450. https://doi.org/10.21205/deufmd.2023257414
AMA Uyulan C, Arslan E. Sliding Mode-based Traction Control System Design for Electric Scooter BLDCM through Field-Oriented Vector Control Approach. DEUFMD. May 2023;25(74):433-450. doi:10.21205/deufmd.2023257414
Chicago Uyulan, Caglar, and Ersen Arslan. “Sliding Mode-Based Traction Control System Design for Electric Scooter BLDCM through Field-Oriented Vector Control Approach”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 25, no. 74 (May 2023): 433-50. https://doi.org/10.21205/deufmd.2023257414.
EndNote Uyulan C, Arslan E (May 1, 2023) Sliding Mode-based Traction Control System Design for Electric Scooter BLDCM through Field-Oriented Vector Control Approach. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25 74 433–450.
IEEE C. Uyulan and E. Arslan, “Sliding Mode-based Traction Control System Design for Electric Scooter BLDCM through Field-Oriented Vector Control Approach”, DEUFMD, vol. 25, no. 74, pp. 433–450, 2023, doi: 10.21205/deufmd.2023257414.
ISNAD Uyulan, Caglar - Arslan, Ersen. “Sliding Mode-Based Traction Control System Design for Electric Scooter BLDCM through Field-Oriented Vector Control Approach”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 25/74 (May 2023), 433-450. https://doi.org/10.21205/deufmd.2023257414.
JAMA Uyulan C, Arslan E. Sliding Mode-based Traction Control System Design for Electric Scooter BLDCM through Field-Oriented Vector Control Approach. DEUFMD. 2023;25:433–450.
MLA Uyulan, Caglar and Ersen Arslan. “Sliding Mode-Based Traction Control System Design for Electric Scooter BLDCM through Field-Oriented Vector Control Approach”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 25, no. 74, 2023, pp. 433-50, doi:10.21205/deufmd.2023257414.
Vancouver Uyulan C, Arslan E. Sliding Mode-based Traction Control System Design for Electric Scooter BLDCM through Field-Oriented Vector Control Approach. DEUFMD. 2023;25(74):433-50.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.