Research Article
BibTex RIS Cite

Seismic Response of Saturated Soils in Gölbaşı District of Adıyaman Province to February 06, 2023 Kahramanmaraş Earthquake

Year 2025, Volume: 27 Issue: 80, 160 - 169, 23.05.2025
https://doi.org/10.21205/deufmd.2025278001

Abstract

On February 6, 2023, two major earthquakes with magnitudes Mw = 7.8 and Mw = 7.6 occurred along the Eastern Anatolian Fault at nine-hour intervals caused wide-spread damage in 11 provinces Hatay, Kahramanmaraş, Adıyaman, Malatya, Gaziantep, Elazığ, Osmaniye, Şanlıurfa, Diyarbakır, Kilis and Adana. In this study, soil liquefaction, which was extensively observed in Gölbaşı District of Adıyaman Province, is examined specifically in the context of the 6 February Kahramanmaraş (Mw=7.8) Earthquake records. As a result of the observations made in the field immediately after the earthquake, eleven microtremor recordings and five boreholes were drilled, and soil samples were recovered. Laboratory tests were carried out on these samples to determine basic soil characteristics. In addition, data from a comprehensive ground survey conducted by Iller Bank in 2006 were evaluated. As a result of the analysis of the data, one-dimensional dynamic soil behavior analyses were carried out on the established ground model considered to represent soil profiles with clayey sand layers. The non-linear behavior of the soil and the development of excess pore water pressure were taken into account. In the analyses using Pazarcık TK 4615 Station data, it was determined that the clayey sand layers liquefied, and this finding was compatible with the observations made in the field following the earthquake. Another result of the study was that due to the loss of stiffness and strength due to cyclic shear stresses and induced excess pore water pressure, attenuation instead of amplification occurred in the soil profile, which in turn increased the deformations.

References

  • [1] Guo, T., & Prakash, S., 2000. Liquefaction of silt-clay mixtures. Proceedings of the 12th World Conference on Earthquake Engineering, Upper Hutt, New Zealand, NZ Soc. for Earthquake Engineering, February, Paper No.0561.
  • [2] Boulanger, R. W., & Idriss, I. M., 2006. Liquefaction susceptibility criteria for silts and clays. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 132(11), pp.1413-1426. doi:10.1061/ASCE1090-0241(2006)132:11(1413).
  • [3] Prakash, S., & Puri, V. K., 2010. Recent advances in liquefaction of fine-grained soils. Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, May, pp.24-29, San Diego, California, Paper No. 4.17a.
  • [4] Park, S. S., & Kim, Y. S., 2013. Liquefaction resistance of sands containing plastic fines with different plasticity. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 139(5), pp.825-830. doi:10.1061/(ASCE)GT.1943-5606.0000806.
  • [5] Thakur, A. S., Pandya, S., & Sachan, A., 2021. Dynamic behavior and characteristic failure response of low plasticity cohesive soil. International Journal of Civil Engineering, 19(2), pp.167-185. doi:10.1007/s40999-020-00560-1.
  • [6] Akıl, B., Bektaş, İ. B., Şahin, M. S., Saygı, M. S., & Yılmaz, M., 2006. The geology and geotechnical report of sites that are subject to development plans of Gölbaşı Adıyaman Province. Report No: İLB-İ/02-007-002, in Turkish, Bayındırlık ve İskan Bakanlığı, p.255.
  • [7] Yaman, G., 2007. Prediction of geotechnical properties of cohesive soils from in-situ tests: An evaluation of a local database. Master of Science Thesis, Middle East Technical University, p.161.
  • [8] Bowles, J. E., 1996. Foundation Analysis and Design. 5th Edition, McGraw-Hill, ISBN: 0-07-118844-4, 1207 pages.
  • [9] Youd, T. L., & Idriss, I. M., 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 127(4), pp.297-313. doi:10.1061/(ASCE)1090-0241(2001)127:10(817).
  • [10] Deep Soil, 2022. 1-D Wave Propagation Program for Geotechnical Site Response, Version 7.0.33.0, University of Illinois and Youssef Hashash.
  • [11] Darendeli, M. B., 2001. Development of a new family of normalized modulus reduction and material damping curves. PhD Dissertation, The University of Texas at Austin, p.394.
  • [12] Phillips, C., & Hashash, Y., 2009. Damping formulation for non-linear 1D site response analyses. Soil Dynamics and Earthquake Engineering, 29, pp.1143–1158.
  • [13] Groholski, D., Hashash, Y., Kim, B., Musgrove, M., Harmon, J., & Stewart, J., 2016. Simplified model for small-strain nonlinearity and strength in 1D seismic site response analysis. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 142(9), pp.1-14. doi:10.1061/(ASCE)GT.1943-5606.0001496.
  • [14] Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Ilhan, O., Xing, G., Numanoglu, O., Groholski, D.R., Phillips, C.A., & Park, D., 2020. DEEPSOIL 7.0, User Manual. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign.
  • [15] Matasović, N., & Vucetic, M., 1995. Generalized cyclic-degradation-pore pressure model for clays. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 121(1), pp.33-42.
  • [16] Doi, I., & Kamai, T., 2020. Relationship between earthquake-induced excess pore water pressure and strong ground motion observed in a monitored fill slope. Engineering Geology, p.266. doi:10.1016/j.enggeo.2019.105391.

Adıyaman Ili Gölbaşı Ilçesindeki Suya Doygun Zeminlerin 6 Şubat 2023 Kahramanmaraş Depremine Sismik Tepkisi

Year 2025, Volume: 27 Issue: 80, 160 - 169, 23.05.2025
https://doi.org/10.21205/deufmd.2025278001

Abstract

6 Şubat 2023'te Doğu Anadolu Fayı boyunca dokuz saat arayla Mw=7.8 ve Mw=7.6 büyüklüğünde meydana gelen iki büyük deprem Hatay, Kahramanmaraş, Adıyaman, Malatya, Gaziantep, Elazığ, Osmaniye, Şanlıurfa, Diyarbakır, Kilis ve Adana olmak üzere 11 ilde geniş çaplı hasara yol açtı. Bu çalışmada Adıyaman İli Gölbaşı İlçesi'nde yoğun olarak gözlemlenen zemin sıvılaşması 6 Şubat Kahramanmaraş Deprem (Mw=7.8) kayıtları özelinde incelenmiştir. Depremin hemen ardından arazide yapılan gözlemler sonucunda 11 mikrotremor kaydı ve 5 sondaj kuyusu açılarak zemin örnekleri alınmıştır. Temel zemin özelliklerini belirlemek amacıyla bu numuneler üzerinde laboratuvar deneyleri yapılmıştır. Ayrıca İller Bankası'nın 2006 yılında gerçekleştirdiği kapsamlı zemin araştırmasının verileri de değerlendirilmiştir. Verilerin analizi sonucunda killi kum tabakalarına sahip zemin profillerini temsil ettiği düşünülen bir zemin modeli kurulmuş ve bunun üzerinde tek boyutlu dinamik zemin davranış analizleri gerçekleştirilmiştir. Zeminin doğrusal olmayan davranışı ve aşırı boşluk suyu basıncının gelişimi analizlerde dikkate alınmıştır. Pazarcık TK 4615 İstasyonu verileri kullanılarak yapılan analizlerde deprem sonrası sahada yapılan gözlemlerle uyumlu olarak killi kum tabakalarının sıvılaştığı belirlenmiştir. Çalışmanın bir diğer sonucu ise tekrarlı kayma gerilmeleri ve aşırı boşluk suyu basıncına bağlı olarak rijitlik ve dayanım kaybı nedeniyle zemin profilinde büyütme yerine azalma meydana gelmesi ve sonuç olarak deformasyonların artmasıdır.

References

  • [1] Guo, T., & Prakash, S., 2000. Liquefaction of silt-clay mixtures. Proceedings of the 12th World Conference on Earthquake Engineering, Upper Hutt, New Zealand, NZ Soc. for Earthquake Engineering, February, Paper No.0561.
  • [2] Boulanger, R. W., & Idriss, I. M., 2006. Liquefaction susceptibility criteria for silts and clays. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 132(11), pp.1413-1426. doi:10.1061/ASCE1090-0241(2006)132:11(1413).
  • [3] Prakash, S., & Puri, V. K., 2010. Recent advances in liquefaction of fine-grained soils. Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, May, pp.24-29, San Diego, California, Paper No. 4.17a.
  • [4] Park, S. S., & Kim, Y. S., 2013. Liquefaction resistance of sands containing plastic fines with different plasticity. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 139(5), pp.825-830. doi:10.1061/(ASCE)GT.1943-5606.0000806.
  • [5] Thakur, A. S., Pandya, S., & Sachan, A., 2021. Dynamic behavior and characteristic failure response of low plasticity cohesive soil. International Journal of Civil Engineering, 19(2), pp.167-185. doi:10.1007/s40999-020-00560-1.
  • [6] Akıl, B., Bektaş, İ. B., Şahin, M. S., Saygı, M. S., & Yılmaz, M., 2006. The geology and geotechnical report of sites that are subject to development plans of Gölbaşı Adıyaman Province. Report No: İLB-İ/02-007-002, in Turkish, Bayındırlık ve İskan Bakanlığı, p.255.
  • [7] Yaman, G., 2007. Prediction of geotechnical properties of cohesive soils from in-situ tests: An evaluation of a local database. Master of Science Thesis, Middle East Technical University, p.161.
  • [8] Bowles, J. E., 1996. Foundation Analysis and Design. 5th Edition, McGraw-Hill, ISBN: 0-07-118844-4, 1207 pages.
  • [9] Youd, T. L., & Idriss, I. M., 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 127(4), pp.297-313. doi:10.1061/(ASCE)1090-0241(2001)127:10(817).
  • [10] Deep Soil, 2022. 1-D Wave Propagation Program for Geotechnical Site Response, Version 7.0.33.0, University of Illinois and Youssef Hashash.
  • [11] Darendeli, M. B., 2001. Development of a new family of normalized modulus reduction and material damping curves. PhD Dissertation, The University of Texas at Austin, p.394.
  • [12] Phillips, C., & Hashash, Y., 2009. Damping formulation for non-linear 1D site response analyses. Soil Dynamics and Earthquake Engineering, 29, pp.1143–1158.
  • [13] Groholski, D., Hashash, Y., Kim, B., Musgrove, M., Harmon, J., & Stewart, J., 2016. Simplified model for small-strain nonlinearity and strength in 1D seismic site response analysis. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 142(9), pp.1-14. doi:10.1061/(ASCE)GT.1943-5606.0001496.
  • [14] Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Ilhan, O., Xing, G., Numanoglu, O., Groholski, D.R., Phillips, C.A., & Park, D., 2020. DEEPSOIL 7.0, User Manual. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign.
  • [15] Matasović, N., & Vucetic, M., 1995. Generalized cyclic-degradation-pore pressure model for clays. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 121(1), pp.33-42.
  • [16] Doi, I., & Kamai, T., 2020. Relationship between earthquake-induced excess pore water pressure and strong ground motion observed in a monitored fill slope. Engineering Geology, p.266. doi:10.1016/j.enggeo.2019.105391.
There are 16 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Research Article
Authors

Gürkan Özden 0000-0002-7327-2248

Büşra Kartal This is me 0000-0003-2107-057X

Early Pub Date May 12, 2025
Publication Date May 23, 2025
Submission Date February 13, 2024
Acceptance Date March 21, 2024
Published in Issue Year 2025 Volume: 27 Issue: 80

Cite

APA Özden, G., & Kartal, B. (2025). Seismic Response of Saturated Soils in Gölbaşı District of Adıyaman Province to February 06, 2023 Kahramanmaraş Earthquake. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(80), 160-169. https://doi.org/10.21205/deufmd.2025278001
AMA Özden G, Kartal B. Seismic Response of Saturated Soils in Gölbaşı District of Adıyaman Province to February 06, 2023 Kahramanmaraş Earthquake. DEUFMD. May 2025;27(80):160-169. doi:10.21205/deufmd.2025278001
Chicago Özden, Gürkan, and Büşra Kartal. “Seismic Response of Saturated Soils in Gölbaşı District of Adıyaman Province to February 06, 2023 Kahramanmaraş Earthquake”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 80 (May 2025): 160-69. https://doi.org/10.21205/deufmd.2025278001.
EndNote Özden G, Kartal B (May 1, 2025) Seismic Response of Saturated Soils in Gölbaşı District of Adıyaman Province to February 06, 2023 Kahramanmaraş Earthquake. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 80 160–169.
IEEE G. Özden and B. Kartal, “Seismic Response of Saturated Soils in Gölbaşı District of Adıyaman Province to February 06, 2023 Kahramanmaraş Earthquake”, DEUFMD, vol. 27, no. 80, pp. 160–169, 2025, doi: 10.21205/deufmd.2025278001.
ISNAD Özden, Gürkan - Kartal, Büşra. “Seismic Response of Saturated Soils in Gölbaşı District of Adıyaman Province to February 06, 2023 Kahramanmaraş Earthquake”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/80 (May 2025), 160-169. https://doi.org/10.21205/deufmd.2025278001.
JAMA Özden G, Kartal B. Seismic Response of Saturated Soils in Gölbaşı District of Adıyaman Province to February 06, 2023 Kahramanmaraş Earthquake. DEUFMD. 2025;27:160–169.
MLA Özden, Gürkan and Büşra Kartal. “Seismic Response of Saturated Soils in Gölbaşı District of Adıyaman Province to February 06, 2023 Kahramanmaraş Earthquake”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 80, 2025, pp. 160-9, doi:10.21205/deufmd.2025278001.
Vancouver Özden G, Kartal B. Seismic Response of Saturated Soils in Gölbaşı District of Adıyaman Province to February 06, 2023 Kahramanmaraş Earthquake. DEUFMD. 2025;27(80):160-9.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.