BibTex RIS Kaynak Göster

İskemi-Reperfüzyon ve Kanser Metastazı: Biyokimyasal Bakış,

Yıl 2008, Cilt: 22 Sayı: 2, 89 - 98, 01.08.2008

Öz

Kaynakça

  • 1. Siemionow M, Arslan E. Ischemia/reperfusion injury: A review in relation to free tissue transfers. Microsurgery 2004;24: 468-475.
  • 2. Kerrigan CL, Stotland MA. Ischemia reperfusion injury: a review. Microsurgery 1993;14:165–175.
  • 3. Carden DL, Granger DN. Pathophysiology of ischemiareperfusion injury. J Pathol, 2000;190: 255–266.
  • 4. Manson PN, Anthenelli RM, Im MJ, Bulkley GB, Hoopes JE. The role of oxygen-free radicals in ischemic tissue injury in island skin flaps. Ann Surg 1983;198:87–90.
  • 5. Knight KR, Angel MF, Lepore DA et al. Secondary ischaemia in rabbit skin flaps: the roles played by thromboxane and free radicals. Clin Sci 1991;80:235–240.
  • 6. Morris SF, Pang CY, Zhong A, Boyd B, Forrest CR. Assessment of ischemia-induced reperfusion injury in the pig latissimus dorsi myocutaneous flap model. Plast Reconstr Surg 1993;92:1162–1172.
  • 7. İşlekel H, İşlekel S, Güner G. Biochemical Mechanism and Tissue Injury of Cerebral Ischemia and Reperfusion Part II: Tissue Injury. Journal of Neurological Sciences (Turkish). Norol Bil D 2000;17: 2.
  • 8. Simon RJ Maxwell, Gregory YH Lip. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. International Journal of Cardiology 1997;58:95–117.
  • 9. Fouad Amr A, El-Rehany M, Abdel-Aziz, Maghraby HK. The hepatoprotective effect of carnosine against ischemia/reperfusion liver injury in rats. European Journal of Pharmacology 2007, 572:61-68.
  • 10. Doi K, Horiuchi T, Uchinami M et al. Hepatic Ischemia– Reperfusion Promotes Liver Metastasis of Colon Cancer. J Surg Res 2002;15:243-247.
  • 11. Moon B-K, Lee YJ, Battle P, Jessup JM, Raz A, Kim H-R C. Galectin–3 Protects Human Breast Carcinoma Cells against Nitric Oxide-Induced Apoptosis. American Journal of Pathology 2001; 59: 1055-1060.
  • 12. Shirahane K, Yamaguchi K, Koga K, Watanabe M, Kuroki S, Tanaka M. Hepatic ischemia/reperfusion injury is prevented by a novel matrix metalloproteinase inhibitor, ONO-4817. Surgery 2006;139:653–664.
  • 13. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000;18:1135–1149.
  • 14. Nelson KK, Melendez JA. Mitochondrial Redox Control Of Matrix Metalloproteinases. Free Rad Biol & Med 2004; 37:768 -784.
  • 15. Murray GI, Duncan ME, Arbuckle E, Melvin WT, Fothergill JE. Matrix metalloproteinases and their inhibitors in gastric cancer. Gut 1998;43:791- 797.
  • 16. Remacle AG, Noel A, Duggan Cet al. Assay of matrix metalloproteinases types 1, 2, 3 and 9 in breast cancer. Br J Cancer 1998;77:926- 931.
  • 17. Jung K, Nowak L, Lein M, Priem F, Schnorr D, Loening SA. Matrix metalloproteinases 1 and 3, tissue inhibitor of metalloproteinase-1 and the complex of metalloproteinase-1/tissue inhibitor in plasma of patients with prostate cancer. Int J Cancer 1997;74:220- 223.
  • 18. Johansson N, Airola K, Grenman R, Kariniemi AL, Saarialho-Kere U, Kahari VM. Expression of collagenase-3 (matrix metalloproteinase-13) in squamous cell carcinomas of the head and neck. Am J Pathol 1997; 151:499- 508.
  • 19. Onisto M, Garbisa S, Caenazzo C et al. Reverse transcription-polymerase chain reaction phenotyping of metalloproteinases and inhibitors involved in tumormatrix invasion. Diagn Mol Pathol 1993;2:74-80.
  • 20. Ito T, Ito M, Shiozawa J, Naito S, Kanematsu T, Sekine I. Expression of the MMP-1 in human pancreatic carcinoma: relationship with prognostic factor. Mod Pathol 1999;12:669 -674.
  • 21. Bolon I, Gouyer V, Devouassoux M et al. Expression of cets-1, collagenase 1, and urokinase-type plasminogen activator genes in lung carcinomas. Am J Pathol 1995; 147:1298-1310.
  • 22. Westermarck J, Kahari VM. Regulation of matrix metaloproteinase expression in tumor invasion. FASEB J 1999;13:781-792.
  • 23. Murray GI, Duncan ME, O’Neil P, McKay JA, Melvin WT, Fothergill JE. Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J Pathol 1998;185:256- 261.
  • 24. Rutter JL, Mitchell TI, Buttice G et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res 1998;58:5321–5325.
  • 25. Kanamori Y, Matsushima M, Minaguchi T et al. Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/ deletion polymorphism in its promoter region. Cancer Res 1999;59:4225- 4227.
  • 26. Ye S, Dhillon S, Turner SJ et al. Invasiveness of cutaneous malignant melanoma is influenced by matrix metalloproteinase-1 gene polymorphism. Cancer Res 2001;61:1296–1298.
  • 27. Noll WW, Belloni DR, Rutter JL et al. Loss of heterozygosity on chromosome 11q22–23 in melanoma is associated with retention of the insertion polymorphism in the matrix metalloproteinase-1 promoter. Am J Pathol 2001;158:691–697.
  • 28. Zhu Y, Spitz MR, Lei L, Mills GB, Wu X. A single nucleotide polymorphism in the matrix metalloproteinase- 1 promoter enhances lung cancer susceptibility. Cancer Res 2001;61:7825–7829.
  • 29. Hirata H, Naito K, Yoshihiro S, Matsuyama H, Suehiro Y, Hinoda YA. Single nucleotide polymorphism in the matrix metalloproteinase-1 promoter is associated with conventional renal cell carcinoma. Int J Cancer 2003;106:372– 374.
  • 30. Hinoda Y, Okayama N, Takano N et al. Association of functional polymorphisms of matrix metalloproteinase (MMP)-1 and MMP-3 genes with colorectal cancer. Int J Cancer 2002;102:526- 529.
  • 31. Ghilardi G, Biondi ML, Mangoni J et al. Matrix metalloproteinase-1 promoter polymorphism 1G/2G is correlated with colorectal cancer invasiveness. Clin Cancer Res 2001;7:2344-2346.
  • 32. Nishioka Y, Kobayashi K, Sagae S et al. A single nucleotide polymorphism in the matrix metalloproteinase- 1 promoter in endometrial carcinomas. Jpn J Cancer Res 2000;91:612- 615.
  • 33. Nicoud IB, Jones CM, Pierce JM et al. Warm hepatic ischemia-reperfusion promotes growth of colorectal carcinoma micrometastases in mouse liver via matrix metalloproteinase-9 induction. Cancer Res 2007;67:2720-2728.
  • 34. Janssen AM, Bosman CB, van Duijn W et al. Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin Cancer Res 2000;6:3183 - 3192.
  • 35. Malafa M, Margenthaler J, Webb B, Neitzel L, Christophersen M. MnSOD expression is increased in metastatic gastric cancer. J Surg Res 2000;88:130– 134.
  • 36. Nelson KK, Ranganathan AC, Mansouri J, et al. Elevated sod2 activity augments matrix metalloproteinase expression: Evidence fort he involvement of endogenous hydrogen peroxide ın regulatıng metastasis. Clin Cancer Res 2001;1:424–432.
  • 37. Wenk J, Brenneisen P, Wlaschek M et al. Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrixdegrading metalloprotease-1. J Biol Chem 1999; 274: 25869-25876.
  • 38. Ambrosone CB, Freudenheim JL, Thompson PA et al. Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 1999;59:602–606.
  • 39. Fujii J, Taniguchi N. Phorbol ester induces manganesesuperoxide dismutase in tumor necrosis factor-resistant cells. J Biol Chem 1991;266:23142–23146.
  • 40. Murley JS, Kataoka Y, Weydert CJ, Oberley LW, Grdina D J. Delayed cytoprotection after enhancement of Sod2 (MnSOD) gene expression in SA-NH Mouse sarcoma cells exposed to WR-1065, the active metabolite of amifostine. Radiat Res 2002;158:101–109.
  • 41. Wong GHW, Goeddel DV. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 1998;242:941– 944.
  • 42. Masuda A, Longo DL, Kobayashi Y, Appella E, Oppenheim JJ, Matsushima K. Induction of mitochondrial manganese superoxide dismutase by interleukin 1. FASEB J 1988;2:3087– 3091.
  • 43. Tsan MF, White JE, Del Vecchio PJ, Shaffer JB. IL-6 enhances TNF-alpha- and IL-1-induced increase of Mn superoxide dismutase mRNA and O2 tolerance. Am J Physiol 1992;263:22– 26.
  • 44. Lavrovsky Y, Chatterjee B, Clark RA, Roy AK. Role of redox-regulated transcription factors in inflammation, aging and age-related diseases. Exp Gerontol 2000; 35:521–532.
  • 45. Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 2006;11:1696– 701.
  • 46. Skiles JW, Gonnella NC, Jeng AY. The design, structures and clinical update of small molecular weight matrix metalloproteinase inhibitors. Curr Med Chem 2004;11: 2911–2977.
  • 47. Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev Cancer 2002;2:657–672.
  • 48. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002;295:2387–2392.
  • 49. Matter H, Schudok M. Recent advances in the design of matrix metalloprotease inhibitors. Curr Opin Drug Discovery Dev 2004;7:513–535.
  • 50. Rao BG. Recent development in the design of specific matrix metalloproteinase inhibitors aided by structural and computational studies. Curr Pharm Des 2005;11: 295–322.
  • 51. Murphy G, Houbrechts A, Cockett MI, Williamson RA, O’Shea M, Docherty AJ. The N-terminal domain of tissue inhibitor of metallopro-teinases retains metalloproteinase inhibitory activity. Biochemistry 1991;30:8097–8102.
  • 52. Will H, Atkinson SJ, Butler GS, Smith B, Murphy G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation: regulation by TIMP-2 and TIMP-3. J Biol Chem 1996; 271: 17119-17123.
  • 53. Barrett AJ. 2-Macroglobulin. Methods Enzymol. 1981; 80:737–754.
  • 54. Cawston TE, Mercer E. Preferential binding of collagenase to a2-macroglobulin in the presence of the tissue inhibitor of metallopro-teinases. FEBS Lett 1986;209:9– 12.
  • 55. Herman MP, Sukhova GK, Kisiel W et al. Tissue factor pathway inhibitor–2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest 2001;107:1117–1126.
  • 56. Oh J, Takahashi R, Kondo S et al. The membraneanchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 2001;107:789–800.
  • 57. Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase- 2. J Biol Chem 2003;278:4135–4144.
  • 58. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome Cancer Metastasis Rev 2007;26:225-239.
  • 59. Stefan AMP, Simons JW, Mabjeesh NJ. HIF at crossroads between ischemia and carcinogenesis. J Cell Physiol 2004;200:20-30.
  • 60. Grimshaw MJ. Endothelins and hypoxia-inducible factor in cancer. Endocr Related Cancer 2007;14:233-244.
  • 61. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 2005;202:654-662.
  • 62. Bernard P. Insight into the structural determinants for selective inhibition of matrix metalloproteinases. 2007; 12:640–646.
  • 63. Wada CK. The evolution of the matrix metalloproteinase inhibitor drug discovery program at abbott laboratories. Current Topics in Medicinal Chemistry 2004;4:1255–1267.
  • 64. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med 2005; 9:267–285.

İskemi-Reperfüzyon ve Kanser Metastazı: Biyokimyasal Bakış,

Yıl 2008, Cilt: 22 Sayı: 2, 89 - 98, 01.08.2008

Öz

İskemi-reperfüzyon insan organizmasında pek çok patofizyolojik sürecin başlangıcında önemli rol alan karmaşık bir reaksiyondur. Iskemi-reperfuzyon ile tumor metastazi arasında da ilişkiler mevcuttur. Ancak bu konu yeterince aydınlatılamamıştır. Bu yazıda iskemi-reperfüzyon olayı ile kanser metastazı arasındaki ilişkilerin biyokimyasal pencereden açıklanması hedeflenmiştir

Kaynakça

  • 1. Siemionow M, Arslan E. Ischemia/reperfusion injury: A review in relation to free tissue transfers. Microsurgery 2004;24: 468-475.
  • 2. Kerrigan CL, Stotland MA. Ischemia reperfusion injury: a review. Microsurgery 1993;14:165–175.
  • 3. Carden DL, Granger DN. Pathophysiology of ischemiareperfusion injury. J Pathol, 2000;190: 255–266.
  • 4. Manson PN, Anthenelli RM, Im MJ, Bulkley GB, Hoopes JE. The role of oxygen-free radicals in ischemic tissue injury in island skin flaps. Ann Surg 1983;198:87–90.
  • 5. Knight KR, Angel MF, Lepore DA et al. Secondary ischaemia in rabbit skin flaps: the roles played by thromboxane and free radicals. Clin Sci 1991;80:235–240.
  • 6. Morris SF, Pang CY, Zhong A, Boyd B, Forrest CR. Assessment of ischemia-induced reperfusion injury in the pig latissimus dorsi myocutaneous flap model. Plast Reconstr Surg 1993;92:1162–1172.
  • 7. İşlekel H, İşlekel S, Güner G. Biochemical Mechanism and Tissue Injury of Cerebral Ischemia and Reperfusion Part II: Tissue Injury. Journal of Neurological Sciences (Turkish). Norol Bil D 2000;17: 2.
  • 8. Simon RJ Maxwell, Gregory YH Lip. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. International Journal of Cardiology 1997;58:95–117.
  • 9. Fouad Amr A, El-Rehany M, Abdel-Aziz, Maghraby HK. The hepatoprotective effect of carnosine against ischemia/reperfusion liver injury in rats. European Journal of Pharmacology 2007, 572:61-68.
  • 10. Doi K, Horiuchi T, Uchinami M et al. Hepatic Ischemia– Reperfusion Promotes Liver Metastasis of Colon Cancer. J Surg Res 2002;15:243-247.
  • 11. Moon B-K, Lee YJ, Battle P, Jessup JM, Raz A, Kim H-R C. Galectin–3 Protects Human Breast Carcinoma Cells against Nitric Oxide-Induced Apoptosis. American Journal of Pathology 2001; 59: 1055-1060.
  • 12. Shirahane K, Yamaguchi K, Koga K, Watanabe M, Kuroki S, Tanaka M. Hepatic ischemia/reperfusion injury is prevented by a novel matrix metalloproteinase inhibitor, ONO-4817. Surgery 2006;139:653–664.
  • 13. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000;18:1135–1149.
  • 14. Nelson KK, Melendez JA. Mitochondrial Redox Control Of Matrix Metalloproteinases. Free Rad Biol & Med 2004; 37:768 -784.
  • 15. Murray GI, Duncan ME, Arbuckle E, Melvin WT, Fothergill JE. Matrix metalloproteinases and their inhibitors in gastric cancer. Gut 1998;43:791- 797.
  • 16. Remacle AG, Noel A, Duggan Cet al. Assay of matrix metalloproteinases types 1, 2, 3 and 9 in breast cancer. Br J Cancer 1998;77:926- 931.
  • 17. Jung K, Nowak L, Lein M, Priem F, Schnorr D, Loening SA. Matrix metalloproteinases 1 and 3, tissue inhibitor of metalloproteinase-1 and the complex of metalloproteinase-1/tissue inhibitor in plasma of patients with prostate cancer. Int J Cancer 1997;74:220- 223.
  • 18. Johansson N, Airola K, Grenman R, Kariniemi AL, Saarialho-Kere U, Kahari VM. Expression of collagenase-3 (matrix metalloproteinase-13) in squamous cell carcinomas of the head and neck. Am J Pathol 1997; 151:499- 508.
  • 19. Onisto M, Garbisa S, Caenazzo C et al. Reverse transcription-polymerase chain reaction phenotyping of metalloproteinases and inhibitors involved in tumormatrix invasion. Diagn Mol Pathol 1993;2:74-80.
  • 20. Ito T, Ito M, Shiozawa J, Naito S, Kanematsu T, Sekine I. Expression of the MMP-1 in human pancreatic carcinoma: relationship with prognostic factor. Mod Pathol 1999;12:669 -674.
  • 21. Bolon I, Gouyer V, Devouassoux M et al. Expression of cets-1, collagenase 1, and urokinase-type plasminogen activator genes in lung carcinomas. Am J Pathol 1995; 147:1298-1310.
  • 22. Westermarck J, Kahari VM. Regulation of matrix metaloproteinase expression in tumor invasion. FASEB J 1999;13:781-792.
  • 23. Murray GI, Duncan ME, O’Neil P, McKay JA, Melvin WT, Fothergill JE. Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J Pathol 1998;185:256- 261.
  • 24. Rutter JL, Mitchell TI, Buttice G et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res 1998;58:5321–5325.
  • 25. Kanamori Y, Matsushima M, Minaguchi T et al. Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/ deletion polymorphism in its promoter region. Cancer Res 1999;59:4225- 4227.
  • 26. Ye S, Dhillon S, Turner SJ et al. Invasiveness of cutaneous malignant melanoma is influenced by matrix metalloproteinase-1 gene polymorphism. Cancer Res 2001;61:1296–1298.
  • 27. Noll WW, Belloni DR, Rutter JL et al. Loss of heterozygosity on chromosome 11q22–23 in melanoma is associated with retention of the insertion polymorphism in the matrix metalloproteinase-1 promoter. Am J Pathol 2001;158:691–697.
  • 28. Zhu Y, Spitz MR, Lei L, Mills GB, Wu X. A single nucleotide polymorphism in the matrix metalloproteinase- 1 promoter enhances lung cancer susceptibility. Cancer Res 2001;61:7825–7829.
  • 29. Hirata H, Naito K, Yoshihiro S, Matsuyama H, Suehiro Y, Hinoda YA. Single nucleotide polymorphism in the matrix metalloproteinase-1 promoter is associated with conventional renal cell carcinoma. Int J Cancer 2003;106:372– 374.
  • 30. Hinoda Y, Okayama N, Takano N et al. Association of functional polymorphisms of matrix metalloproteinase (MMP)-1 and MMP-3 genes with colorectal cancer. Int J Cancer 2002;102:526- 529.
  • 31. Ghilardi G, Biondi ML, Mangoni J et al. Matrix metalloproteinase-1 promoter polymorphism 1G/2G is correlated with colorectal cancer invasiveness. Clin Cancer Res 2001;7:2344-2346.
  • 32. Nishioka Y, Kobayashi K, Sagae S et al. A single nucleotide polymorphism in the matrix metalloproteinase- 1 promoter in endometrial carcinomas. Jpn J Cancer Res 2000;91:612- 615.
  • 33. Nicoud IB, Jones CM, Pierce JM et al. Warm hepatic ischemia-reperfusion promotes growth of colorectal carcinoma micrometastases in mouse liver via matrix metalloproteinase-9 induction. Cancer Res 2007;67:2720-2728.
  • 34. Janssen AM, Bosman CB, van Duijn W et al. Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin Cancer Res 2000;6:3183 - 3192.
  • 35. Malafa M, Margenthaler J, Webb B, Neitzel L, Christophersen M. MnSOD expression is increased in metastatic gastric cancer. J Surg Res 2000;88:130– 134.
  • 36. Nelson KK, Ranganathan AC, Mansouri J, et al. Elevated sod2 activity augments matrix metalloproteinase expression: Evidence fort he involvement of endogenous hydrogen peroxide ın regulatıng metastasis. Clin Cancer Res 2001;1:424–432.
  • 37. Wenk J, Brenneisen P, Wlaschek M et al. Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrixdegrading metalloprotease-1. J Biol Chem 1999; 274: 25869-25876.
  • 38. Ambrosone CB, Freudenheim JL, Thompson PA et al. Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 1999;59:602–606.
  • 39. Fujii J, Taniguchi N. Phorbol ester induces manganesesuperoxide dismutase in tumor necrosis factor-resistant cells. J Biol Chem 1991;266:23142–23146.
  • 40. Murley JS, Kataoka Y, Weydert CJ, Oberley LW, Grdina D J. Delayed cytoprotection after enhancement of Sod2 (MnSOD) gene expression in SA-NH Mouse sarcoma cells exposed to WR-1065, the active metabolite of amifostine. Radiat Res 2002;158:101–109.
  • 41. Wong GHW, Goeddel DV. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 1998;242:941– 944.
  • 42. Masuda A, Longo DL, Kobayashi Y, Appella E, Oppenheim JJ, Matsushima K. Induction of mitochondrial manganese superoxide dismutase by interleukin 1. FASEB J 1988;2:3087– 3091.
  • 43. Tsan MF, White JE, Del Vecchio PJ, Shaffer JB. IL-6 enhances TNF-alpha- and IL-1-induced increase of Mn superoxide dismutase mRNA and O2 tolerance. Am J Physiol 1992;263:22– 26.
  • 44. Lavrovsky Y, Chatterjee B, Clark RA, Roy AK. Role of redox-regulated transcription factors in inflammation, aging and age-related diseases. Exp Gerontol 2000; 35:521–532.
  • 45. Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 2006;11:1696– 701.
  • 46. Skiles JW, Gonnella NC, Jeng AY. The design, structures and clinical update of small molecular weight matrix metalloproteinase inhibitors. Curr Med Chem 2004;11: 2911–2977.
  • 47. Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev Cancer 2002;2:657–672.
  • 48. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002;295:2387–2392.
  • 49. Matter H, Schudok M. Recent advances in the design of matrix metalloprotease inhibitors. Curr Opin Drug Discovery Dev 2004;7:513–535.
  • 50. Rao BG. Recent development in the design of specific matrix metalloproteinase inhibitors aided by structural and computational studies. Curr Pharm Des 2005;11: 295–322.
  • 51. Murphy G, Houbrechts A, Cockett MI, Williamson RA, O’Shea M, Docherty AJ. The N-terminal domain of tissue inhibitor of metallopro-teinases retains metalloproteinase inhibitory activity. Biochemistry 1991;30:8097–8102.
  • 52. Will H, Atkinson SJ, Butler GS, Smith B, Murphy G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation: regulation by TIMP-2 and TIMP-3. J Biol Chem 1996; 271: 17119-17123.
  • 53. Barrett AJ. 2-Macroglobulin. Methods Enzymol. 1981; 80:737–754.
  • 54. Cawston TE, Mercer E. Preferential binding of collagenase to a2-macroglobulin in the presence of the tissue inhibitor of metallopro-teinases. FEBS Lett 1986;209:9– 12.
  • 55. Herman MP, Sukhova GK, Kisiel W et al. Tissue factor pathway inhibitor–2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest 2001;107:1117–1126.
  • 56. Oh J, Takahashi R, Kondo S et al. The membraneanchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 2001;107:789–800.
  • 57. Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase- 2. J Biol Chem 2003;278:4135–4144.
  • 58. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome Cancer Metastasis Rev 2007;26:225-239.
  • 59. Stefan AMP, Simons JW, Mabjeesh NJ. HIF at crossroads between ischemia and carcinogenesis. J Cell Physiol 2004;200:20-30.
  • 60. Grimshaw MJ. Endothelins and hypoxia-inducible factor in cancer. Endocr Related Cancer 2007;14:233-244.
  • 61. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 2005;202:654-662.
  • 62. Bernard P. Insight into the structural determinants for selective inhibition of matrix metalloproteinases. 2007; 12:640–646.
  • 63. Wada CK. The evolution of the matrix metalloproteinase inhibitor drug discovery program at abbott laboratories. Current Topics in Medicinal Chemistry 2004;4:1255–1267.
  • 64. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med 2005; 9:267–285.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

F. C. Özkaya Bu kişi benim

H. Koçdor Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2008
Gönderilme Tarihi 11 Ağustos 2015
Yayımlandığı Sayı Yıl 2008 Cilt: 22 Sayı: 2

Kaynak Göster

Vancouver Özkaya FC, Koçdor H. İskemi-Reperfüzyon ve Kanser Metastazı: Biyokimyasal Bakış,. DEU Tıp Derg. 2008;22(2):89-98.