Research Article
BibTex RIS Cite

p-Cymene Based Organometallic Ruthenium(II)-Arene Complexes with Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity

Year 2017, Volume: 44 Issue: 4, 381 - 394, 05.12.2017
https://doi.org/10.5798/dicletip.362482

Abstract

Objective: Thiosemicarbazone (TSC) containing three new mononuclear ruthenium(II)-arene complexes were synthesized so as to contribute to the development of ruthenium complexes with pharmacologically attracted properties.
Methods: Reactions of the ruthenium(II)-arene dimer [{RuCl(μ-Cl)(η6-p-cymene)}2] (1) with the respective TSC1-3 (1:2 molar ratio) in methanol resulted in p-cymene containing new conformationally rigid half-sandwich organometallic ruthenium(II)-arene complexes; [(η6-p-cymene)Ru(TSC1-κ3O,N,S)]Cl (I), [(η6-p-cymene)Ru(Cl)(TSC2-κ2N,S)]Cl (II), and [(η6-p-cymene)Ru(Cl)(TSC3-κ2N,S)]Cl (III). The molecular structures of complexes I, II and III were elucidated on the spectroscopic data obtained by the application of 1H NMR, Fourier transform infrared (FT-IR), UV-vis and elemental analysis techniques. In vitro antimicrobial activities of the synthesized three ruthenium(II)-arene complexes were evaluated using the disc diffusion method.
Results: The spectroscopic data indicated that TSC1 was bounded to the metal as a tridentate ligand with its thione sulfur atom, phenolic oxygen atom and azomethine nitrogen atom in the complex I, while TSC2 and TSC3 were bounded to metal center as bidentate manner through their thione sulfur atom and imine nitrogen (C=N) atom in the complexes II and III, respectively. The obtained antimicrobial activity results showed that these complexes efficiently inhibit the growth of Gram-positive bacterial strains.
Conclusion: The TSC1-3 containing ruthenium(II)-arene complexes were successfully synthesized and their molecular structures were also determined by the spectroscopic methods. All ruthenium(II)-arene complexes showed higher antibacterial activities against Gram-positive bacterial strains than the Gram-negative ones.
Keywords:

References

  • 1. Klayman DL, Scovill JP, Bartosevich JF, Bruce J. 2-Acetylpyridine thiosemicarbazones. 5. 1-[1-(2-Pyridyl)ethyl]-3-thiosemicarbazides as potential antimalarial agents. J Med Chem. 1983;26:35–9. https://doi.org/10.1021/jm00355a008
  • 2. Atalay T, Akgemci EG. Thermodynamic studies of some complexes of 2-benzoylpyridine 4-phenyl-3-thiosemicarbazone. Turk J Chem. 1998;22:123–7.
  • 3. Beraldo H, Gambino D. The wide pharmacological versatility of semicarbazones, thiosemicarbozones and their metal complexes. Mini-Rev Med Chem. 2004; 4: 31–9. https://doi.org/10.2174/1389557043487484
  • 4. Garcia-Tojal J, Garcia-Orad A, Serra JL, et al. Synthesis and spectroscopic properties of copper(II) complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Structure and biological activity of [Cu(C6H6N3S2)2]. J Inorg Biochem. 1999;75:45–54. https://doi.org/10.1016/S0162-0134(99)00031-8
  • 5. Haraguchi SK, Silva AA, Vidotti GJ, et al. Antitrypanosomal activity of novel benzaldehyde-thiosemicarbazone derivatives from kaurenoic acid. Molecules. 2011; 16: 1166 – 80. https://doi.org/ 10.3390/molecules16021166
  • 6. Dimmock JR, McColl JM, Wonkol SL, Thayer RS, Hancock DS. Evaluation of the thiosemicarbazones of some aryl alkyl ketones and related compounds for anticonvulsant activities. Eur J Med Chem. 1991;26: 529–34. https://doi.org/10.1016/0223-5234(91)90148-G
  • 7. Sharma S, Athar F, Maurya MR, Azam, A. Copper(II) complexes with substituted thiosemicarbazones of thiophene-2-carboxaldehyde: Synthesis, characterization and antiamoebic activity against E. histolytica. Eur J Med Chem. 2005;40:1414–19. https://doi.org/ 10.1016/j.ejmech.2005.05.013
  • 8. Singh S, Bharti N, Mohapatra PP. Chemistry and biology of synthetic and naturally occurring antiamoebic agents. Chem Rev. 2009;109:1900–47. https://doi.org/10.1021/cr068217k
  • 9. Yildirim H, Guler E, Yavuz M, et al. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents. Mater Sci Eng C. 2014;44:1–8. https://doi.org/ 10.1016/j.msec.2014.08.007
  • 10. Castarlenas R, Vovard C, Fischmeister C, Dixneuf PH. Allenylidene-to-indenylidene rearrangement in arene−ruthenium complexes: A key step to highly active catalysts for olefin metathesis reactions. J Am Chem Soc. 2006;128:4079–89. https://doi.org/ 10.1021/ja0579762
  • 11. Pampaloni G. Aromatic hydrocarbons as ligands. Recent advances in the synthesis, the reactivity and the applications of bis(η6-arene) complexes. Coord Chem Rev. 2010;254:402–19. https://doi.org/10.1016/ j.ccr.2009.05.014
  • 12. Raja MU, Sindhuja E, Ramesh R. Arene ruthenium(II) p-chloroacetophenone phenylthiosemicarbazone complex mediated transfer hydrogenation of ketones. Inorg Chem Commun. 2010; 13: 1321 – 4. https://doi.org/10.1016/j.inoche.2010.07.026
  • 13. Stringer T, Therrien B, Hendricks DT, Guzgay H, Smith GS. Mono- and dinuclear (η6-arene) ruthenium(II) benzaldehyde thiosemicarbazone complexes: Synthesis, characterization and cytotoxicity. Inorg Chem Commun. 2011;14:956–60. https://doi.org/10.1016/j.inoche.2011.03.041
  • 14. Beckford F, Dourth D, Shaloski Jr M, et al. Half-sandwich ruthenium–arene complexes with thiosemicarbazones: Synthesis and biological evaluation of [(η6-p-cymene)Ru(piperonal thiosemicarbazones)Cl]Cl complexes. J Inorg Biochem. 2011;105:1019–29. https://doi.org/10.1016/j.jinorgbio.2011.04.008
  • 15. Allardyce CS, Dorcier A, Scolaro C, Dyson PJ. Development of organometallic (organo-transition metal) pharmaceuticals. Appl Organomet Chem. 2005;19:1–10. https://doi.org/10.1002/aoc.725
  • 16. Ozturk N, Yaman PK, Yavuz M, Oter O, Timur S, Subasi E. Synthesis, structural characterization, oxygen sensitivity, and antimicrobial activity of ruthenium(II) carbonyl complexes with thiosemicarbazones. J Coord Chem. 2014;67:2688–700. https://doi.org/10.1080/ 00958972.2014.948433
  • 17. Bennett MA, Huang TN, Matheson TW, Smith AK. (η6-Hexamethylbenzene)ruthenium complexes. Inorg Synth. 1982;21:74–8. https://doi.org/10.1002/ 9780470132524.ch16
  • 18. Mandal SK, Chakravarty AR. Arene ruthenium complexes of N,N′- and N,O-donor schiff base ligands: An X-ray structure of [(η6-p-cymene) RuCl(C5,H4N-2-CH=NC6H4-p-Me)Cl∙C6H6∙H2O. Polyhedron. 1992;11: 823–7. https://doi.org/10.1016/S02775387(00)86017-9
  • 19. Klayman DL, Bartosevich JF, Griffin TS, Mason CJ, Scovill JP. 2-Acetylpyridine thiosemicarbazones. 1. A new class of potential antimalarial agents. J Med Chem. 1979;22:855–62. https://doi.org/10.1021/jm00193a020
  • 20. Scovill JP. A facile synthesis of thiosemicarbazides and thiosemicarbazones by the transamination of 4-methyl-4-phenyl-3-thiosemicarbazide. Phosphorus, Sulfur Silicon Relat Elem. 1991;60:15–9. https://doi.org/10.1080/10426509108233920
  • 21. Sampath K, Sathiyaraj S, Raja G, Jayabalakrishnan C. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity. J Mol Struct. 2013;1046:82–91. https://doi.org/10.1016/j.molstruc.2013.04.051
  • 22. Manimaran A, Jayabalakrishnan C. DNA-binding, catalytic oxidation, C-C coupling reactions and antibacterial activities of binuclear Ru(II) thiosemicarbazone complexes: Synthesis and spectral characterization. J Adv Res. 2012;3:233–43. https://doi.org/10.1016/j.jare.2011.07.005
  • 23. Natarajan K, Poddar RK, Agarwala U. Mixed complexes of ruthenium(III) and ruthenium(II) with triphenylphosphine or triphenylarsine and other ligands. J Inorg Nucl Chem. 1977;39:431–5. https://doi.org/10.1016/0022-1902(77)80056-0
  • 24. Manivannan S, Prabhakaran R, Balasubramanian KP, Dhanabal V, Karvembu R, Chinnusamy V. Synthesis, spectral, electrochemical and catalytic studies of new Ru(III) tetradentate Schiff base complexes. Appl Organomet Chem. 2007; 21: 952 – 7. https://doi.org/10.1002/aoc.1318.
  • 25. Kamalesu S, Swarnalatha K, Subramanian R, Muralidharan K, Gomathi S. Polypyridyl-hydrazone based Ruthenium(II) complexes: Spectral and computational analysis. Inorg Chim Acta. 2017;461:35–44. https://doi.org/10.1016/j.ica.2017.01.029
  • 26. Beckford FA, Leblanc G, Thessing J, et al. Organometallic ruthenium complexes with thiosemicarbazone ligands: Synthesis, structure and cytotoxicity of [(η6-p-cymene)Ru(NS)Cl]+ (NS = 9-anthraldehyde thiosemicarbazones. Inorg Chem Commun. 2009; 12: 1094–8. https://doi.org/ 10.1016/j.inoche.2009.08.034
  • 27. Sivagamasundari M, Ramesh R. Luminescent property and catalytic activity of Ru(II) carbonyl complexes containing N, O donor of 2-hydroxy-1-naphthylideneimines. Spectrochim Acta Part A. 2007; 66:427–33. https://doi.org/10.1016/j.saa.2006.03.017
  • 28. Krishna S, Miller LS. Host–pathogen interactions between the skin and Staphylococcus aureus. Curr Opin Microbiol. 2012;15:28–35. https://doi.org/10.1016/ j.mib.2011.11.003
  • 29. Schlecht LM, Peters BM, Krom BP, et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology. 2015;161:168–81. https://doi.org/ 10.1099/mic.0.083485-0
  • 30. Walsh SE, Maillard JY, Russel AD, Catrenich CE, Charbonneau DL, Bartolo RG. Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J Appl Microbiol. 2003;94:240–7. https://doi.org/10.1046/j.1365-2672.2003.01825.x
Year 2017, Volume: 44 Issue: 4, 381 - 394, 05.12.2017
https://doi.org/10.5798/dicletip.362482

Abstract

References

  • 1. Klayman DL, Scovill JP, Bartosevich JF, Bruce J. 2-Acetylpyridine thiosemicarbazones. 5. 1-[1-(2-Pyridyl)ethyl]-3-thiosemicarbazides as potential antimalarial agents. J Med Chem. 1983;26:35–9. https://doi.org/10.1021/jm00355a008
  • 2. Atalay T, Akgemci EG. Thermodynamic studies of some complexes of 2-benzoylpyridine 4-phenyl-3-thiosemicarbazone. Turk J Chem. 1998;22:123–7.
  • 3. Beraldo H, Gambino D. The wide pharmacological versatility of semicarbazones, thiosemicarbozones and their metal complexes. Mini-Rev Med Chem. 2004; 4: 31–9. https://doi.org/10.2174/1389557043487484
  • 4. Garcia-Tojal J, Garcia-Orad A, Serra JL, et al. Synthesis and spectroscopic properties of copper(II) complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Structure and biological activity of [Cu(C6H6N3S2)2]. J Inorg Biochem. 1999;75:45–54. https://doi.org/10.1016/S0162-0134(99)00031-8
  • 5. Haraguchi SK, Silva AA, Vidotti GJ, et al. Antitrypanosomal activity of novel benzaldehyde-thiosemicarbazone derivatives from kaurenoic acid. Molecules. 2011; 16: 1166 – 80. https://doi.org/ 10.3390/molecules16021166
  • 6. Dimmock JR, McColl JM, Wonkol SL, Thayer RS, Hancock DS. Evaluation of the thiosemicarbazones of some aryl alkyl ketones and related compounds for anticonvulsant activities. Eur J Med Chem. 1991;26: 529–34. https://doi.org/10.1016/0223-5234(91)90148-G
  • 7. Sharma S, Athar F, Maurya MR, Azam, A. Copper(II) complexes with substituted thiosemicarbazones of thiophene-2-carboxaldehyde: Synthesis, characterization and antiamoebic activity against E. histolytica. Eur J Med Chem. 2005;40:1414–19. https://doi.org/ 10.1016/j.ejmech.2005.05.013
  • 8. Singh S, Bharti N, Mohapatra PP. Chemistry and biology of synthetic and naturally occurring antiamoebic agents. Chem Rev. 2009;109:1900–47. https://doi.org/10.1021/cr068217k
  • 9. Yildirim H, Guler E, Yavuz M, et al. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents. Mater Sci Eng C. 2014;44:1–8. https://doi.org/ 10.1016/j.msec.2014.08.007
  • 10. Castarlenas R, Vovard C, Fischmeister C, Dixneuf PH. Allenylidene-to-indenylidene rearrangement in arene−ruthenium complexes: A key step to highly active catalysts for olefin metathesis reactions. J Am Chem Soc. 2006;128:4079–89. https://doi.org/ 10.1021/ja0579762
  • 11. Pampaloni G. Aromatic hydrocarbons as ligands. Recent advances in the synthesis, the reactivity and the applications of bis(η6-arene) complexes. Coord Chem Rev. 2010;254:402–19. https://doi.org/10.1016/ j.ccr.2009.05.014
  • 12. Raja MU, Sindhuja E, Ramesh R. Arene ruthenium(II) p-chloroacetophenone phenylthiosemicarbazone complex mediated transfer hydrogenation of ketones. Inorg Chem Commun. 2010; 13: 1321 – 4. https://doi.org/10.1016/j.inoche.2010.07.026
  • 13. Stringer T, Therrien B, Hendricks DT, Guzgay H, Smith GS. Mono- and dinuclear (η6-arene) ruthenium(II) benzaldehyde thiosemicarbazone complexes: Synthesis, characterization and cytotoxicity. Inorg Chem Commun. 2011;14:956–60. https://doi.org/10.1016/j.inoche.2011.03.041
  • 14. Beckford F, Dourth D, Shaloski Jr M, et al. Half-sandwich ruthenium–arene complexes with thiosemicarbazones: Synthesis and biological evaluation of [(η6-p-cymene)Ru(piperonal thiosemicarbazones)Cl]Cl complexes. J Inorg Biochem. 2011;105:1019–29. https://doi.org/10.1016/j.jinorgbio.2011.04.008
  • 15. Allardyce CS, Dorcier A, Scolaro C, Dyson PJ. Development of organometallic (organo-transition metal) pharmaceuticals. Appl Organomet Chem. 2005;19:1–10. https://doi.org/10.1002/aoc.725
  • 16. Ozturk N, Yaman PK, Yavuz M, Oter O, Timur S, Subasi E. Synthesis, structural characterization, oxygen sensitivity, and antimicrobial activity of ruthenium(II) carbonyl complexes with thiosemicarbazones. J Coord Chem. 2014;67:2688–700. https://doi.org/10.1080/ 00958972.2014.948433
  • 17. Bennett MA, Huang TN, Matheson TW, Smith AK. (η6-Hexamethylbenzene)ruthenium complexes. Inorg Synth. 1982;21:74–8. https://doi.org/10.1002/ 9780470132524.ch16
  • 18. Mandal SK, Chakravarty AR. Arene ruthenium complexes of N,N′- and N,O-donor schiff base ligands: An X-ray structure of [(η6-p-cymene) RuCl(C5,H4N-2-CH=NC6H4-p-Me)Cl∙C6H6∙H2O. Polyhedron. 1992;11: 823–7. https://doi.org/10.1016/S02775387(00)86017-9
  • 19. Klayman DL, Bartosevich JF, Griffin TS, Mason CJ, Scovill JP. 2-Acetylpyridine thiosemicarbazones. 1. A new class of potential antimalarial agents. J Med Chem. 1979;22:855–62. https://doi.org/10.1021/jm00193a020
  • 20. Scovill JP. A facile synthesis of thiosemicarbazides and thiosemicarbazones by the transamination of 4-methyl-4-phenyl-3-thiosemicarbazide. Phosphorus, Sulfur Silicon Relat Elem. 1991;60:15–9. https://doi.org/10.1080/10426509108233920
  • 21. Sampath K, Sathiyaraj S, Raja G, Jayabalakrishnan C. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity. J Mol Struct. 2013;1046:82–91. https://doi.org/10.1016/j.molstruc.2013.04.051
  • 22. Manimaran A, Jayabalakrishnan C. DNA-binding, catalytic oxidation, C-C coupling reactions and antibacterial activities of binuclear Ru(II) thiosemicarbazone complexes: Synthesis and spectral characterization. J Adv Res. 2012;3:233–43. https://doi.org/10.1016/j.jare.2011.07.005
  • 23. Natarajan K, Poddar RK, Agarwala U. Mixed complexes of ruthenium(III) and ruthenium(II) with triphenylphosphine or triphenylarsine and other ligands. J Inorg Nucl Chem. 1977;39:431–5. https://doi.org/10.1016/0022-1902(77)80056-0
  • 24. Manivannan S, Prabhakaran R, Balasubramanian KP, Dhanabal V, Karvembu R, Chinnusamy V. Synthesis, spectral, electrochemical and catalytic studies of new Ru(III) tetradentate Schiff base complexes. Appl Organomet Chem. 2007; 21: 952 – 7. https://doi.org/10.1002/aoc.1318.
  • 25. Kamalesu S, Swarnalatha K, Subramanian R, Muralidharan K, Gomathi S. Polypyridyl-hydrazone based Ruthenium(II) complexes: Spectral and computational analysis. Inorg Chim Acta. 2017;461:35–44. https://doi.org/10.1016/j.ica.2017.01.029
  • 26. Beckford FA, Leblanc G, Thessing J, et al. Organometallic ruthenium complexes with thiosemicarbazone ligands: Synthesis, structure and cytotoxicity of [(η6-p-cymene)Ru(NS)Cl]+ (NS = 9-anthraldehyde thiosemicarbazones. Inorg Chem Commun. 2009; 12: 1094–8. https://doi.org/ 10.1016/j.inoche.2009.08.034
  • 27. Sivagamasundari M, Ramesh R. Luminescent property and catalytic activity of Ru(II) carbonyl complexes containing N, O donor of 2-hydroxy-1-naphthylideneimines. Spectrochim Acta Part A. 2007; 66:427–33. https://doi.org/10.1016/j.saa.2006.03.017
  • 28. Krishna S, Miller LS. Host–pathogen interactions between the skin and Staphylococcus aureus. Curr Opin Microbiol. 2012;15:28–35. https://doi.org/10.1016/ j.mib.2011.11.003
  • 29. Schlecht LM, Peters BM, Krom BP, et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology. 2015;161:168–81. https://doi.org/ 10.1099/mic.0.083485-0
  • 30. Walsh SE, Maillard JY, Russel AD, Catrenich CE, Charbonneau DL, Bartolo RG. Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J Appl Microbiol. 2003;94:240–7. https://doi.org/10.1046/j.1365-2672.2003.01825.x
There are 30 citations in total.

Details

Subjects Health Care Administration
Journal Section Research Articles
Authors

Murat Yavuz 0000-0003-3452-8551

Pelin Köse Yaman This is me 0000-0003-0376-2177

Nurdan Öztürk This is me 0000-0002-9026-6376

Suna Timur This is me 0000-0002-1981-7577

Elif Subaşı This is me 0000-0002-4235-9391

Publication Date December 5, 2017
Submission Date December 5, 2017
Published in Issue Year 2017 Volume: 44 Issue: 4

Cite

APA Yavuz, M., Yaman, P. K., Öztürk, N., Timur, S., et al. (2017). p-Cymene Based Organometallic Ruthenium(II)-Arene Complexes with Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity. Dicle Tıp Dergisi, 44(4), 381-394. https://doi.org/10.5798/dicletip.362482
AMA Yavuz M, Yaman PK, Öztürk N, Timur S, Subaşı E. p-Cymene Based Organometallic Ruthenium(II)-Arene Complexes with Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity. diclemedj. December 2017;44(4):381-394. doi:10.5798/dicletip.362482
Chicago Yavuz, Murat, Pelin Köse Yaman, Nurdan Öztürk, Suna Timur, and Elif Subaşı. “P-Cymene Based Organometallic Ruthenium(II)-Arene Complexes With Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity”. Dicle Tıp Dergisi 44, no. 4 (December 2017): 381-94. https://doi.org/10.5798/dicletip.362482.
EndNote Yavuz M, Yaman PK, Öztürk N, Timur S, Subaşı E (December 1, 2017) p-Cymene Based Organometallic Ruthenium(II)-Arene Complexes with Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity. Dicle Tıp Dergisi 44 4 381–394.
IEEE M. Yavuz, P. K. Yaman, N. Öztürk, S. Timur, and E. Subaşı, “p-Cymene Based Organometallic Ruthenium(II)-Arene Complexes with Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity”, diclemedj, vol. 44, no. 4, pp. 381–394, 2017, doi: 10.5798/dicletip.362482.
ISNAD Yavuz, Murat et al. “P-Cymene Based Organometallic Ruthenium(II)-Arene Complexes With Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity”. Dicle Tıp Dergisi 44/4 (December 2017), 381-394. https://doi.org/10.5798/dicletip.362482.
JAMA Yavuz M, Yaman PK, Öztürk N, Timur S, Subaşı E. p-Cymene Based Organometallic Ruthenium(II)-Arene Complexes with Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity. diclemedj. 2017;44:381–394.
MLA Yavuz, Murat et al. “P-Cymene Based Organometallic Ruthenium(II)-Arene Complexes With Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity”. Dicle Tıp Dergisi, vol. 44, no. 4, 2017, pp. 381-94, doi:10.5798/dicletip.362482.
Vancouver Yavuz M, Yaman PK, Öztürk N, Timur S, Subaşı E. p-Cymene Based Organometallic Ruthenium(II)-Arene Complexes with Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity. diclemedj. 2017;44(4):381-94.