BibTex RIS Cite

Primer açık açılı glokom tanı ve takibinde bilgisayarlı görme alanı ile optikal koherens tomografinin karşılaştırılması

Year 2016, Volume: 43 Issue: 3, 441 - 451, 01.09.2016

Abstract

Amaç: Primer açık açılı glokom (PAAG) hastalarında görme alanı
(GA) indeksleri ile optikal koherens tomografi (OKT) ölçümleri
arasındaki ilişkinin değerlendirilmesi ve glokomatöz progresyonun
erken tespitindeki rollerinin araştırılması amaçlanmıştır.
Yöntemler: 2007 Ocak ile 2012 Haziran tarihleri arasında Dicle
Üniversitesi Tıp Fakültesi Göz Hastalıkları Glokom Biriminde takipli,
ilaç tedavisiyle göz içi basıncı kontrolü sağlanan, PAAG tanısı
almış 72 hastanın 84 gözü çalışmaya alındı. GA’daki MD değeri
temel alınarak glokom evrelemesi yapıldı. Buna göre; Grup
1 MD ≥-6dB olan “erken evre glokom” hastalarını, Grup 2 MD
-6dB ile -12dB arası olan “orta evre glokom” hastalarını, Grup 3
MD ≤-12dB olan “ileri evre glokom” hastalarını kapsamaktaydı.
Ölçülen OKT değerleri ile GA değerleri arasındaki ilişki incelendi.
Ayrıca gruplardaki hastaların ortalama optik sinir başı (OSB) ve
retina sinir lifi tabakası (RSLT) kalınlıkları hesaplanarak gruplar
arasında karşılaştırıldı ve glokom evresi ile OKT’de ölçülen RSLT
kalınlığı arasındaki ilişki değerlendirildi. MD’de 2 dB artış ve Avg
Thickness’da 20 µm incelme progresyon olarak kabul edilerek,
GA ve OKT’ deki progresyon oranları hesaplandı.
Bulgular: GA; MD indeksi ile OKT; Smax/Tavg, Imax/Tavg,
Smax/Navg, Max-Min, Smax, Imax, Savg, Iavg, Avgthick, RA,
RCSA, RV, CA, CV, CDHR, CDVR, CDAR parametreleri arasında
güçlü pozitif korelasyon görüldü. GA; PSD indeksi ile OKT;
Smax/Imax, Max-Min, Smax, Imax, Savg, Iavg, AvgThick, DA,
RA, RCSA, RV, CA, CV, CDHR, CDVR, CDAR parametreleri arasında
istatistiksel olarak pozitif korelasyon izlendi. Çalışmamızda
PAAG alt grupları açısından da ortalama RSLT kalınlığı arasında
istatistiksel olarak anlamlı farklılık olduğu saptandı. Glokomun
evresi arttıkça ortalama RSLT kalınlığının azaldığı tespit edildi.
Tüm hastaların GA ve OKT parametrelerin ilk ve son ölçümleri
arasındaki ilişki incelenerek progresyon araştırıldı. Hastaların
%25’inde GA’da progresyon, %29,6’sında OKT’de progresyon
saptandı. GA’da progresyon saptanan tüm hastalarda OKT’de
de progresyon vardı. Olguların %4,6’sında GA’da progresyon
olmaksızın OKT’de progresyon olduğu görüldü.
Sonuç: Glokomda GA indeksleri ile OKT parametreleri arasında
anlamlı bir pozitif korelasyonun olduğu görüldü. Glokomatöz
progresyonun erken tanısı için OKT’de RSLT kalınlığı takibi GA
indekslerinden daha erken bulgu verdiğinden glokom takibinde
ümit vericidir

References

  • 1. Naghizadeh F, Garas A, Vargha P, Hollo G. Detection of Early Glaucomatous Progression With Different Parameters of the RTVue Optical Coherence Tomograph. J Glaucoma 2014;23:195-8.
  • 2. Bengtsson B. Incidence of manifest glaucoma. Br J Ophthalmol 1989;73:483-7.
  • 3. Kerrigan-Baumrind LA, Quigley Ha, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41:741-8.
  • 4. Cao KY, Kapasi M, Betchkal JA, Birt CM. Relationship between central corneal thickness and progressionof visual field loss in patients with open-angle glaucoma. Can J Ophthalmol 2012;47:155-8.
  • 5. Alencar LM, Zangwill LM, Weinreb RN, et al. Agreement for Detecting Glaucoma Progression with the GDx Guided Progression Analysis, Automated Perimetry, and Optic Disc Photography. American Academy of Ophthalmology 2010;117:462-70.
  • 6. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography-a pilot study. Arch Ophthalmol 1995;113:586-96.
  • 7. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996;80:389-93.
  • 8. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy preceds the onset of glaucomatous field loss. Arch Ophthalmol 1991;109:77-83.
  • 9. Quigley HA, Dunkelberger GR, Gren WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453-64.
  • 10. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 2004;138:218-25.
  • 11. Bayraktar Ş, Türker G. Erken glokom ve glokom şüphesi olgularında optik koherens tomografi ile elde edilen retina sinir lifi kalınlığı ölçümlerinin tekrarlanabilirliği. T Oft Gaz 2000;30:404-8.
  • 12. Pieroth L, Schuman JS, Hertzmark E, et al. Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. Ophthalmology 1999;106:570-9.
  • 13. Kananmori A, Nakamura M, Escano MF, et al. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 2003;135:513-20.
  • 14. Bowd C, Zangwill LM, Berry CC, et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 2001;42:1993-2003.
  • 15. Zangwill LM, Williams J, Berry CC, et al. A comparison of optical coherence tomography and retinal nerve fiber layer photography for the detection of nerve fiber layer damage in glaucoma. Ophthalmology. 2000;107:1309-15.
  • 16. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995;113:586-96.
  • 17. Mistlberger A, Liebmann JM, Greenfield DS, et al. Heilderberg retina tomography and optical coherence tomoraphy in normal, ocular hypertensive and glacomaous eyes. Ophtalmology 1999;106:2027-32.
  • 18. Üstündağ C. Glokomlu gözlerde optik koherens tomografi ile saptanan retina sinir lifi kalinliklarinin görme alani indeksleri ile korelasyonu. T Oft Gaz 2001;31:600-4.
  • 19. Hoh ST, Greenfield DS, Mistlberger A, et al. Optical coherense tomography and scanning laser polarimetry in normal, oculer hypertensive and glaucomatous eyes. Am J Ophthalmol 2000;129:129-35.
  • 20. Zangwill LM, Bowd C, Berry CC, et al. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol 2001;119:1069- 70.
  • 21. Uchida H, Brigatti L, Caprioli J. Detection of structural damage from glaucoma with confocal laser image analysis. Invest Ophthalmol Vis Sci 1996;37:2393-99.
  • 22. Iester M, Courtright P, Mikelberg FS, et al. Retinal nerve fiber layer height in high tension glaucoma and healthy eyes. J Glaucoma 1998;7:1-7.
  • 23. Teesalu P, Vihanninjoki K, Airaksinen PJ, et al. Correlation of blue-on-yellow visual fields with scanning confocal laser optic disc measurements. Invest Ophthalmol Vis Sci 1997;38:2452-9.
  • 24. Bayer A, Erdurman C, Uysal Y, ve ark. Glokomlu olgularla normal olguları ayırt etmede konfokal tarayıcı lazer tomografi. MN Oftalmoloji 2003;10:241-4.
  • 25. Park KH, Caprioli J. Development of a novel reference plane for the Heidelberg retina tomograph with optical coherence tomography measurements. J Glaucoma 2002;11:385-91.
  • 26. Miglior M, Guareschi M, Romanazzi F, et al. The impact of definition of primary open-angle glaucoma on the crosssectional assessment of diagnostic validity of Heidelberg retinal tomography. Am J Ophthalmol 2005;139:878-87.
  • 27. Townsend KA, Wollstein G, Schuman JS. Imaging of the retinal nerve fibre layer for glaucoma. The British Journal Of Ophthalmology 2009;93:139-43.
  • 28. Leung CK, Chan WM, Hui YL, et al. Analysis of retinal nerve fiber layer and optic nerve head in glaucoma with different reference plane offsets, using optical coherence tomography. Invest Ophthalmol Vis Sci 2005;46:891-9.
  • 29. Greenfield DS, Bagga H, Knighton RW. Comparison of macular and peripapillary measurements for the detection of glaucoma: An Optical Coherence Tomography Study. Ophthalmology 2003;121:41-6.
  • 30. Medeiros F, Zangwill L, Bowd C, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. American Journal of Ophthalmology 2005;139:44-55.
  • 31. Wollstein G, Ishikawa H, Wang J, et al. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. American Journal of Ophthalmology 2004;139:39-43.
  • 32. Garway-Heath DF, Caprioli J, Fitzke FW, et al. Scaling the hill of vision: the psychological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci 2000;41:1774-82.
  • 33. Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 1998;105:1557-63.
  • 34. Funasaki S, Shirakashi M, Funaki H, et al. Relationship between age and the thickness of the retinal nerve fiber layer in normal subjects. Jpn J Ophthalmol 1999;43:180-5.
  • 35. Toprak AB, Yılmaz ÖF. Relation of optic disc topography and age related thickness of retinal nerve fiber layer as measured using scanning laser polarimetry in normal subjects. Br J Ophthalmol 2000;84:473-478.
  • 36. Sanchez-Galeana CA, Bowd C, Zangwill LM, et al. Shortwavelength automated perimetry results are correlated with optical coherence tomography retinal nerve fiber layer thickness measurements in glaucomatous eyes. Ophthalmology 2004;111:1866-72.
  • 37. Zafar S, Gurses-Ozden R, Makornwattana M, et al. Scanning protocol choice affects optical coherence tomography (OKT-3) measurements. J Glaucoma 2004;13:142-4.
  • 38. Dağlıoğlu MC, Tuzcu EA, İlhan N, et al. Our results of large area mitomycin C application trabeculectomy in cases with advanced glaucoma. Dicle Med J, 2013;40:597-600.
  • 39. Leung CKS, Yung WH, Ng ACK, et al. Evaluation of scanning resolution on retinal nerve fiber layer measurement using optical coherence tomography in normal and glaucomatous eyes. J Glaucoma 2004;13:479-85.
  • 40. Önal S, İzgi B, Altunbaş HH, et al. Glokomlu olgulara uygulanan “Humphrey Swedish Interactive Threshold Algorithm” (SITA) eşik testi ile santral 30-2 eşik testinin karşılaştırılması. T Oft Gaz 2003;33:122-6.
  • 41. Lan YW, Henson DB, Kwartz AJ. The correlation between optic nerve head topographic measurements, peripapillary nerve fiber layer thickness and visual field indices in glaucoma. Br J Ophthalmol 2003;87;1135-41.
  • 42. Bayer A. Glokomun Progresyonunda Risk Faktörleri. Turkiye Klinikleri J Ophthalmol 2012;5:19-23.
  • 43. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005;123:464-70.

Comparasion of computerized visual field and optical coherence tomography in diagnosis and follow-up of primary open-angle glaucoma

Year 2016, Volume: 43 Issue: 3, 441 - 451, 01.09.2016

Abstract

Objective: To evaluate the relationship between visual field in­dices and optical coherence tomography measurements in pri­mary open-angle glaucoma (POAG) patients and to investigate the role of early detection of glaucomatous progression. Methods: 84 eyes of 72 patients who diagnosed with POAG that controlled with medical treatment at Dicle University Faculty of Medicine, Unit of Ophthalmology Glaucoma follow-up between January 2007 and June 2012 included to the study. Glaucoma staging was done according to the value of visual field (VF) MD. Patients MD value ≥ -6dB (early-stage glaucoma) patients in­cluded in Group 1, MD value between -6dB and -12dB (middle-stage glaucoma) in Group 2 and MD value ≤-12dB (advanced stage glaucoma) in Group 3. The relationship between measured Optical Coherence Tomography (OCT) values and VF values has been examined. In addition, patients in each group were com­pared among groups by calculating the average optic nerve head (ONH) and retinal nerve fiber layer (RNFL) thickness measured by OCT with the stage of glaucoma and the relationship between RNFL thickness values was examined. 2 dB increase in MD and 20 microns thinning in Avg Thickness have been accepted as a progression and OCT in VF progression rates were calculated. Results: There was a strong relationship between VF MD index and OCT Smax/Tavg, Imax/Tavg, Smax/Navg, Max-Min, Smax, Imax, Savg, Iavg, Avgthick, RA, RCSA, RV, CA, CV, CDHR, CDVR, CDAR parameters. Significant correlation between the parameters of VF PSD index and OCT and Smax / Imax, Max-Min, Smax, Imax, Savg, Iavg, Avgthick, DA, RA, RCSA, RV, CA, CV, CDHR, CDVR, CDAR were found statistically. Also there were statistically significant differences in RNFL thickness be­tween sub-groups of POAG in our study. The average RNFL thickness decreased with increasing stage of glaucoma. To in­vestigate the progression, first and last measurements of VF and OCT parameters were compared in all patients. VF and OCT progression was found in 25% and 29,6% of patients respec­tively. In 4,6% of patients OCT progression observed without VF progression. Conclusion: There was a strong correlation between indices of VF and OCT measurements. OCT RNFL thickness in the moni­toring of early progression in glaucoma are promising in terms of providing follow-up of glaucoma because it detects early signs before VF analysis.

References

  • 1. Naghizadeh F, Garas A, Vargha P, Hollo G. Detection of Early Glaucomatous Progression With Different Parameters of the RTVue Optical Coherence Tomograph. J Glaucoma 2014;23:195-8.
  • 2. Bengtsson B. Incidence of manifest glaucoma. Br J Ophthalmol 1989;73:483-7.
  • 3. Kerrigan-Baumrind LA, Quigley Ha, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41:741-8.
  • 4. Cao KY, Kapasi M, Betchkal JA, Birt CM. Relationship between central corneal thickness and progressionof visual field loss in patients with open-angle glaucoma. Can J Ophthalmol 2012;47:155-8.
  • 5. Alencar LM, Zangwill LM, Weinreb RN, et al. Agreement for Detecting Glaucoma Progression with the GDx Guided Progression Analysis, Automated Perimetry, and Optic Disc Photography. American Academy of Ophthalmology 2010;117:462-70.
  • 6. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography-a pilot study. Arch Ophthalmol 1995;113:586-96.
  • 7. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996;80:389-93.
  • 8. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy preceds the onset of glaucomatous field loss. Arch Ophthalmol 1991;109:77-83.
  • 9. Quigley HA, Dunkelberger GR, Gren WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453-64.
  • 10. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 2004;138:218-25.
  • 11. Bayraktar Ş, Türker G. Erken glokom ve glokom şüphesi olgularında optik koherens tomografi ile elde edilen retina sinir lifi kalınlığı ölçümlerinin tekrarlanabilirliği. T Oft Gaz 2000;30:404-8.
  • 12. Pieroth L, Schuman JS, Hertzmark E, et al. Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. Ophthalmology 1999;106:570-9.
  • 13. Kananmori A, Nakamura M, Escano MF, et al. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 2003;135:513-20.
  • 14. Bowd C, Zangwill LM, Berry CC, et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 2001;42:1993-2003.
  • 15. Zangwill LM, Williams J, Berry CC, et al. A comparison of optical coherence tomography and retinal nerve fiber layer photography for the detection of nerve fiber layer damage in glaucoma. Ophthalmology. 2000;107:1309-15.
  • 16. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995;113:586-96.
  • 17. Mistlberger A, Liebmann JM, Greenfield DS, et al. Heilderberg retina tomography and optical coherence tomoraphy in normal, ocular hypertensive and glacomaous eyes. Ophtalmology 1999;106:2027-32.
  • 18. Üstündağ C. Glokomlu gözlerde optik koherens tomografi ile saptanan retina sinir lifi kalinliklarinin görme alani indeksleri ile korelasyonu. T Oft Gaz 2001;31:600-4.
  • 19. Hoh ST, Greenfield DS, Mistlberger A, et al. Optical coherense tomography and scanning laser polarimetry in normal, oculer hypertensive and glaucomatous eyes. Am J Ophthalmol 2000;129:129-35.
  • 20. Zangwill LM, Bowd C, Berry CC, et al. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol 2001;119:1069- 70.
  • 21. Uchida H, Brigatti L, Caprioli J. Detection of structural damage from glaucoma with confocal laser image analysis. Invest Ophthalmol Vis Sci 1996;37:2393-99.
  • 22. Iester M, Courtright P, Mikelberg FS, et al. Retinal nerve fiber layer height in high tension glaucoma and healthy eyes. J Glaucoma 1998;7:1-7.
  • 23. Teesalu P, Vihanninjoki K, Airaksinen PJ, et al. Correlation of blue-on-yellow visual fields with scanning confocal laser optic disc measurements. Invest Ophthalmol Vis Sci 1997;38:2452-9.
  • 24. Bayer A, Erdurman C, Uysal Y, ve ark. Glokomlu olgularla normal olguları ayırt etmede konfokal tarayıcı lazer tomografi. MN Oftalmoloji 2003;10:241-4.
  • 25. Park KH, Caprioli J. Development of a novel reference plane for the Heidelberg retina tomograph with optical coherence tomography measurements. J Glaucoma 2002;11:385-91.
  • 26. Miglior M, Guareschi M, Romanazzi F, et al. The impact of definition of primary open-angle glaucoma on the crosssectional assessment of diagnostic validity of Heidelberg retinal tomography. Am J Ophthalmol 2005;139:878-87.
  • 27. Townsend KA, Wollstein G, Schuman JS. Imaging of the retinal nerve fibre layer for glaucoma. The British Journal Of Ophthalmology 2009;93:139-43.
  • 28. Leung CK, Chan WM, Hui YL, et al. Analysis of retinal nerve fiber layer and optic nerve head in glaucoma with different reference plane offsets, using optical coherence tomography. Invest Ophthalmol Vis Sci 2005;46:891-9.
  • 29. Greenfield DS, Bagga H, Knighton RW. Comparison of macular and peripapillary measurements for the detection of glaucoma: An Optical Coherence Tomography Study. Ophthalmology 2003;121:41-6.
  • 30. Medeiros F, Zangwill L, Bowd C, et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. American Journal of Ophthalmology 2005;139:44-55.
  • 31. Wollstein G, Ishikawa H, Wang J, et al. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. American Journal of Ophthalmology 2004;139:39-43.
  • 32. Garway-Heath DF, Caprioli J, Fitzke FW, et al. Scaling the hill of vision: the psychological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci 2000;41:1774-82.
  • 33. Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 1998;105:1557-63.
  • 34. Funasaki S, Shirakashi M, Funaki H, et al. Relationship between age and the thickness of the retinal nerve fiber layer in normal subjects. Jpn J Ophthalmol 1999;43:180-5.
  • 35. Toprak AB, Yılmaz ÖF. Relation of optic disc topography and age related thickness of retinal nerve fiber layer as measured using scanning laser polarimetry in normal subjects. Br J Ophthalmol 2000;84:473-478.
  • 36. Sanchez-Galeana CA, Bowd C, Zangwill LM, et al. Shortwavelength automated perimetry results are correlated with optical coherence tomography retinal nerve fiber layer thickness measurements in glaucomatous eyes. Ophthalmology 2004;111:1866-72.
  • 37. Zafar S, Gurses-Ozden R, Makornwattana M, et al. Scanning protocol choice affects optical coherence tomography (OKT-3) measurements. J Glaucoma 2004;13:142-4.
  • 38. Dağlıoğlu MC, Tuzcu EA, İlhan N, et al. Our results of large area mitomycin C application trabeculectomy in cases with advanced glaucoma. Dicle Med J, 2013;40:597-600.
  • 39. Leung CKS, Yung WH, Ng ACK, et al. Evaluation of scanning resolution on retinal nerve fiber layer measurement using optical coherence tomography in normal and glaucomatous eyes. J Glaucoma 2004;13:479-85.
  • 40. Önal S, İzgi B, Altunbaş HH, et al. Glokomlu olgulara uygulanan “Humphrey Swedish Interactive Threshold Algorithm” (SITA) eşik testi ile santral 30-2 eşik testinin karşılaştırılması. T Oft Gaz 2003;33:122-6.
  • 41. Lan YW, Henson DB, Kwartz AJ. The correlation between optic nerve head topographic measurements, peripapillary nerve fiber layer thickness and visual field indices in glaucoma. Br J Ophthalmol 2003;87;1135-41.
  • 42. Bayer A. Glokomun Progresyonunda Risk Faktörleri. Turkiye Klinikleri J Ophthalmol 2012;5:19-23.
  • 43. Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005;123:464-70.
There are 43 citations in total.

Details

Other ID JA54FM64GU
Journal Section Research Article
Authors

Birgül Dursun This is me

Selahattin Uğur Keklikçi This is me

Mehmet Emin Dursun This is me

Mine Yıldırım This is me

Seyfettin Erdem This is me

Publication Date September 1, 2016
Submission Date September 1, 2016
Published in Issue Year 2016 Volume: 43 Issue: 3

Cite

APA Dursun, B., Keklikçi, S. U., Dursun, M. E., Yıldırım, M., et al. (2016). Comparasion of computerized visual field and optical coherence tomography in diagnosis and follow-up of primary open-angle glaucoma. Dicle Medical Journal, 43(3), 441-451.
AMA Dursun B, Keklikçi SU, Dursun ME, Yıldırım M, Erdem S. Comparasion of computerized visual field and optical coherence tomography in diagnosis and follow-up of primary open-angle glaucoma. diclemedj. September 2016;43(3):441-451.
Chicago Dursun, Birgül, Selahattin Uğur Keklikçi, Mehmet Emin Dursun, Mine Yıldırım, and Seyfettin Erdem. “Comparasion of Computerized Visual Field and Optical Coherence Tomography in Diagnosis and Follow-up of Primary Open-Angle Glaucoma”. Dicle Medical Journal 43, no. 3 (September 2016): 441-51.
EndNote Dursun B, Keklikçi SU, Dursun ME, Yıldırım M, Erdem S (September 1, 2016) Comparasion of computerized visual field and optical coherence tomography in diagnosis and follow-up of primary open-angle glaucoma. Dicle Medical Journal 43 3 441–451.
IEEE B. Dursun, S. U. Keklikçi, M. E. Dursun, M. Yıldırım, and S. Erdem, “Comparasion of computerized visual field and optical coherence tomography in diagnosis and follow-up of primary open-angle glaucoma”, diclemedj, vol. 43, no. 3, pp. 441–451, 2016.
ISNAD Dursun, Birgül et al. “Comparasion of Computerized Visual Field and Optical Coherence Tomography in Diagnosis and Follow-up of Primary Open-Angle Glaucoma”. Dicle Medical Journal 43/3 (September 2016), 441-451.
JAMA Dursun B, Keklikçi SU, Dursun ME, Yıldırım M, Erdem S. Comparasion of computerized visual field and optical coherence tomography in diagnosis and follow-up of primary open-angle glaucoma. diclemedj. 2016;43:441–451.
MLA Dursun, Birgül et al. “Comparasion of Computerized Visual Field and Optical Coherence Tomography in Diagnosis and Follow-up of Primary Open-Angle Glaucoma”. Dicle Medical Journal, vol. 43, no. 3, 2016, pp. 441-5.
Vancouver Dursun B, Keklikçi SU, Dursun ME, Yıldırım M, Erdem S. Comparasion of computerized visual field and optical coherence tomography in diagnosis and follow-up of primary open-angle glaucoma. diclemedj. 2016;43(3):441-5.