Research Article
BibTex RIS Cite

An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA)

Year 2015, Volume: 3 Issue: 1, 219 - 225, 30.01.2015

Abstract

Quantum-dot Cellular Automata (QCA) has been considered one of the alternative technologies used in Nanoscale logic design and a promising replacement for conventional Complementary Metal Oxide Semiconductor (CMOS) due to express speed, ultralow power consumption, higher scale integration and higher switching frequency. Since reversible logic circuits are one of the significant components of any digital system, especially Fredkin gate played an important role in designing a high speed and ultralow power consuming digital system. In this paper, an efficient design of Fredkin gate based on QCA logic gates: the QCA wire, majority gate and QCA inverter gate has been presented. Furthermore, compared with the previous design, the number of cells, covered area and latency time of the proposed design have reduced by 62.20%, 76.70%, and 25% respectively and also obviate coplanar wire-crossing. Functional correctness of the presented layout has proved by employing QCADesigner tool. The proposed circuit is a promising constructing in low power consuming fault-tolerance system and can stimulate higher degree of integrated applications in QCA.

References

  • Al-Rabadi, A. N., Reversible logic synthesis: From fundamentals to quantum computing. Springer, (2004).
  • Thapliyal, H., & Ranganathan, N.: Testable reversible latches for molecular QCA. In Nanotechnology, NANO'08. 8th IEEE Conference, (2008) pp. 699-702
  • Ma, X., Huang, J., Metra, C., & Lombardi, F., Journal of Electronic Testing 24(1-3) (2008) 297-311.
  • Thapliyal, H., & Ranganathan, N., IEEE Transactions on Nanotechnology 9(1) (2010) 62-69.
  • Landauer, R., IBM J. Research and Development 5(3) (1961) 183-191.
  • Bennett, C. H., IBM J. Research and Development 17(6) (1973) 525-532.
  • Lent, C.S., Tougaw, P.D., Porod, W., (1993) DOI:10.1063/1.108848
  • Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L. (1997) DOI:10.1126/science.277.5328.928
  • Amlani, I., Orlov, A. O., Kummamuru, R. K., Bernstein, G. H., Lent, C. S., & Snider, G. L., Appl. Phys. Lett. 77(5) (2000) 738-740.
  • Wilson, M., Kannangara, K., Smith, G., Simmons, M., & Raguse, B., Nanotechnology: basic science and emerging technologies. CRC Press (2002).
  • Tougaw, P. D., & Lent, C. S., Journal of Applied physics 75(3) (1994) 1818-1825.
  • Meurer, B., Heitmann, D., & Ploog, K., Physical review letters 68(9) (1992) 1371.
  • Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Baldwin, K. W., & West, K. W., Physical review letters 71(4) (1993) 613.
  • Lent, C. S., & Tougaw, P. D., Proceedings of the IEEE 85(4) (1997) 541-557.
  • Amlani, I., Orlov, A. O., Toth, G., Bernstein, G. H., Lent, C. S., & Snider, G. L., Science 284(5412) (1999) 289-291.
  • Orlov, A. O., Amlani, I., Toth, G., Lent, C. S., Bernstein, G. H., & Snider, G. L., Applied physics letters 74(19) (1999) 2875-2877.
  • Bahar, A. N., Habib, M., & Biswas, N. K. (2013) DOI:10.5120/14149-2243
  • Bahar, A. N., Waheed, S., Uddin, M. A., & Habib, M. A., International Journal of Computer Science Engineering (IJCSE) 2(6) (2013) 351-355.
  • Ling-gang, Z., Qing-kang, W., & Yong-bing, D., Journal of Zhejiang University Science A 6(10) (2005) 1090-1094.
  • Meurer, B., Heitmann, D., & Ploog, K., Physical Review B 48(15) (1993) 11488.
  • Roohi, A., Khademolhosseini, H., Sayedsalehi, S., & Navi, K., International Journal of Computer Science Issues (IJCSI) 8(6) (2011) 55-60.
  • Walus, K., Dysart, T. J., Jullien, G. A., & Budiman, R. A., IEEE Transactions on Nanotechnology 3(1) (2004) 26-31.
  • Saiful Islam, M., Rahman, M. M., Begum, Z., Hafiz, Z., & Al Mahmud, A. Synthesis of fault tolerant reversible logic circuits. IEEE Circuits and Systems International Conference on Testing and Diagnosis (ICTD) (2009, April) 1-4.
  • T. Toffoli, “Reversible computing”, In Automata, Languages and Programming, Springer-Verlag (1980) 632-644.

Kuantum-noktası Hücresel Otomasyonda (KHO) Fredkin Geçitinin Etkili Bir Tasarım Deseni

Year 2015, Volume: 3 Issue: 1, 219 - 225, 30.01.2015

Abstract

Kuantum-noktası Hücresel Otomasyon (KHO), nano ölçekteki mantık dizaynlarında kullanılan ve süratli hız, ultra düşük güç tüketimi ve yüksek skalada entegrasyon ve yüksek anahtarlama frekansı yüzünden geleneksel Tümler Metal Oksit Yarıiletkenlerin yerini almada gelecek vadeden alternatif teknolojilerden biri olarak kabul edilmektedir. Bu çalışmada, KHO mantık geçitlerine; KHO kablosu, 3-girdi çoğunluk ve KHO dönüştürücü geçitlerine, dayanan Fredkin geçitinin etkili bir dizaynı sunulmuştur. Dahası, önceki dizaynla kıyaslandığında önerilen dizaynın hücrelerinin sayısı, kaplanan alan ve gecikme zamanı sırasıyla %62,20, %76,70 ve %25 azalmıştır ve aynı zamanda eş düzlemli kablo çaprazlamasını önlemiştir. Sunulan tasarımın işlevsel doğruluğu QCADesigner araçları kullanılarak kanıtlanmıştır. Önerilen devre düşük güç tüketen hata-toleranslı system oluşturmaya uygundur ve KHO’da yüksek dereceli entegrasyon uygulamalarını arttırabilir

References

  • Al-Rabadi, A. N., Reversible logic synthesis: From fundamentals to quantum computing. Springer, (2004).
  • Thapliyal, H., & Ranganathan, N.: Testable reversible latches for molecular QCA. In Nanotechnology, NANO'08. 8th IEEE Conference, (2008) pp. 699-702
  • Ma, X., Huang, J., Metra, C., & Lombardi, F., Journal of Electronic Testing 24(1-3) (2008) 297-311.
  • Thapliyal, H., & Ranganathan, N., IEEE Transactions on Nanotechnology 9(1) (2010) 62-69.
  • Landauer, R., IBM J. Research and Development 5(3) (1961) 183-191.
  • Bennett, C. H., IBM J. Research and Development 17(6) (1973) 525-532.
  • Lent, C.S., Tougaw, P.D., Porod, W., (1993) DOI:10.1063/1.108848
  • Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L. (1997) DOI:10.1126/science.277.5328.928
  • Amlani, I., Orlov, A. O., Kummamuru, R. K., Bernstein, G. H., Lent, C. S., & Snider, G. L., Appl. Phys. Lett. 77(5) (2000) 738-740.
  • Wilson, M., Kannangara, K., Smith, G., Simmons, M., & Raguse, B., Nanotechnology: basic science and emerging technologies. CRC Press (2002).
  • Tougaw, P. D., & Lent, C. S., Journal of Applied physics 75(3) (1994) 1818-1825.
  • Meurer, B., Heitmann, D., & Ploog, K., Physical review letters 68(9) (1992) 1371.
  • Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Baldwin, K. W., & West, K. W., Physical review letters 71(4) (1993) 613.
  • Lent, C. S., & Tougaw, P. D., Proceedings of the IEEE 85(4) (1997) 541-557.
  • Amlani, I., Orlov, A. O., Toth, G., Bernstein, G. H., Lent, C. S., & Snider, G. L., Science 284(5412) (1999) 289-291.
  • Orlov, A. O., Amlani, I., Toth, G., Lent, C. S., Bernstein, G. H., & Snider, G. L., Applied physics letters 74(19) (1999) 2875-2877.
  • Bahar, A. N., Habib, M., & Biswas, N. K. (2013) DOI:10.5120/14149-2243
  • Bahar, A. N., Waheed, S., Uddin, M. A., & Habib, M. A., International Journal of Computer Science Engineering (IJCSE) 2(6) (2013) 351-355.
  • Ling-gang, Z., Qing-kang, W., & Yong-bing, D., Journal of Zhejiang University Science A 6(10) (2005) 1090-1094.
  • Meurer, B., Heitmann, D., & Ploog, K., Physical Review B 48(15) (1993) 11488.
  • Roohi, A., Khademolhosseini, H., Sayedsalehi, S., & Navi, K., International Journal of Computer Science Issues (IJCSI) 8(6) (2011) 55-60.
  • Walus, K., Dysart, T. J., Jullien, G. A., & Budiman, R. A., IEEE Transactions on Nanotechnology 3(1) (2004) 26-31.
  • Saiful Islam, M., Rahman, M. M., Begum, Z., Hafiz, Z., & Al Mahmud, A. Synthesis of fault tolerant reversible logic circuits. IEEE Circuits and Systems International Conference on Testing and Diagnosis (ICTD) (2009, April) 1-4.
  • T. Toffoli, “Reversible computing”, In Automata, Languages and Programming, Springer-Verlag (1980) 632-644.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Bahar

Sajjad Waheed This is me

Md. Ahsan Habib This is me

Publication Date January 30, 2015
Published in Issue Year 2015 Volume: 3 Issue: 1

Cite

APA Bahar, A., Waheed, S., & Habib, M. A. (2015). An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 3(1), 219-225.
AMA Bahar A, Waheed S, Habib MA. An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). DUBİTED. January 2015;3(1):219-225.
Chicago Bahar, Ali, Sajjad Waheed, and Md. Ahsan Habib. “An Efficient Layout Design of Fredkin Gate in Quantum-Dot Cellular Automata (QCA)”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 3, no. 1 (January 2015): 219-25.
EndNote Bahar A, Waheed S, Habib MA (January 1, 2015) An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). Düzce Üniversitesi Bilim ve Teknoloji Dergisi 3 1 219–225.
IEEE A. Bahar, S. Waheed, and M. A. Habib, “An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA)”, DUBİTED, vol. 3, no. 1, pp. 219–225, 2015.
ISNAD Bahar, Ali et al. “An Efficient Layout Design of Fredkin Gate in Quantum-Dot Cellular Automata (QCA)”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 3/1 (January 2015), 219-225.
JAMA Bahar A, Waheed S, Habib MA. An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). DUBİTED. 2015;3:219–225.
MLA Bahar, Ali et al. “An Efficient Layout Design of Fredkin Gate in Quantum-Dot Cellular Automata (QCA)”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 3, no. 1, 2015, pp. 219-25.
Vancouver Bahar A, Waheed S, Habib MA. An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). DUBİTED. 2015;3(1):219-25.