Research Article
BibTex RIS Cite

Lineer Delta Robotun Doğruluk ve Tekrarlanabilirlik Performansı

Year 2020, Volume: 8 Issue: 1, 869 - 879, 31.01.2020
https://doi.org/10.29130/dubited.589330

Abstract

Paralel kinematik mekanizmalar
ailesinden olan lineer delta robot, 3 adet lineer aktüatör ile hareket edilen,
sabit ve hareket platformdan oluşan bir robottur.  Bu çalışmada, lineer delta robotun prototipi
yapılarak doğruluk ve tekrarlanabilirlik performansı gerçekleştirilmiştir.
Lineer delta robot için deney tasarımı düzeneği kurulmuş ve ISO 9283
standardına göre ortalama doğruluk ve tekrarlanabilirlik parametreleri
Microscribe G2X koordinat ölçme cihazı kullanılarak robotun performansı
bulunmuştur. Yapılan testlerde robotun ortalama doğruluğu 1,25 mm ve ortalama
tekrarlanabilirliği ise 1,45 mm bulunmaktadır. Sonuç olarak yapılan testler
açık çevrim kontrol metoduyla yapıldığı için literatürdeki çalışmalara
benzerlik göstermektedir.

References

  • [1] D. Ku, “Direct displacement analysis of a stewart platform mechanism,” Mechanism and Machine Theory, c. 34, s. 3, ss. 453-465, 1999.
  • [2] H. Alp, “Sezgisel yöntemlerle paralel mekanizmaların çalışma uzayı analizi,” Doktora Tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2007.
  • [3] M. Weck and D. Staimer, “Parallel kinematic machine tools – current state and future potentials,” CIRP Annals - Manufacturing Technology, c. 51, s. 2, ss. 671-683, 2002.
  • [4] X. Hu, “Design and analysis of a three degrees of freedom parallel kinematic machine,” M. Sc. Thesis, The Faculty of Engineering and Applied Science Mechanical Engineering Program University of Ontario Institute of Technology, North Oshawa, 2008.
  • [5] S. Yiğit, “Paralel manipülatörlerin uzaysal vektör cebriyöntemiyle kinematik modellemesi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye, 2013.
  • [6] Y. Karabulut, “Dokunmatik ekranlı cihazlar için görüntü işlemeye dayalı robotik test otomasyon sistemi geliştirilmesi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Manisa Celal Bayar Üniversitesi, Manisa, Türkiye, 2016.
  • [7] Y. Meng and Z. Zhuang, “Self-calibration of camera-equipped robot manipulators,” The International Journal of Robotics Research, c. 20, s. 11, ss. 909-921, 2001.
  • [8] M.R. Driels, L.W. Swayze and L.S. Potter, “Full-pose calibration of a robot manipulator using a coordinate-measuring machine,” The International Journal of Advanced Manufacturing Technology, c. 8, s. 1, ss. 34-44, 1993.
  • [9] C. Lightcap, S. Hamner, T. Schmitz and S. Banks, “Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration,” IEEE Transactions on Robotics, c. 24, s. 2, ss. 452-456, 2008.
  • [10] A. Nubiola, “Calibration of a serial robot using a laser tracker,” PhD Thesis, École De Technologie Supérieure, Canada, 2011.
  • [11] G. Mosqueira, J. Apetz, K.M. Santos, E. Villani, R. Suterio and L.G. Trabasso, “Analysis of the indoor GPS system as feedback for the robotic alignment of fuselages using laser radar measurements as comparison,” Robotics and Computer-Integrated Manufacturing, c. 28, ss. 700–709, 2012.
  • [12] M. Ayyıldız, “Esnek üretim sisteminde zeki yükleme ve depolama otomasyonu,” Doktora Tezi, Fen Bilimleri Enstitüsü, Karabük Üniversitesi, Karabük, Türkiye, 2016.
  • [13] E. Aşkar Ayyıldız, “Nümerik Kontrollü Çoklu Paralel Kinematik Mekanizmalar İçin Algoritma Geliştirme,” Doktora Tezi, Fen Bilimleri Enstitüsü, Karabük Üniversitesi, Karabük, Türkiye, 2017.
  • [14] R. Kelaiaia, O. Company and A. Zaatri, “Multiobjective optimization of a linear Delta parallel robot,” Mechanism and Machine Theory, c. 50, ss. 159–178, 2012.
  • [15] X. Liu, J. Wang, K. Oh and J. Kım, “A new approach to the design of a delta robot with a desired workspace,” Journal of Intelligent and Robotic Systems, c. 39, ss. 209–225, 2004.
  • [16] Righettini P., Tasora A. and Giberti H., “Mechatronic design of a 3-DOF parallel translational manipulator”, RAAD 11th workshop on robotics in alpe-adria-danube region, Hungary, 2002, ss. 1-6.
  • [17] F. Xie, X. Liu and J. Wang, “Conceptual design and optimization of a 3-DoF parallel mechanism for a turbine blade grinding machine,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, c. 230, s. 3, ss. 406-413, 2016.
  • [18] O. Company and F. Pierrot, “Modelling and design issues of a 3-axis parallel machine-tool,” Mechanism and Machine Theory, c. 37, ss. 1325–1345, 2002.
  • [19] E. Aşkar Ayyıldız and M. Ayyıldız, “Development of a 3-axis parallel kinematic machine for milling wood material–Part 1: Design,” BioResources, c. 12, s. 4, ss. 9326-9337, 2017.
  • [20] P.S. Shiakolas, K.L. Conrad and T.C. Yih, “On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots,” International Journal of Modelling and Simulation, c. 22, s. 3, ss. 1-10, 2002.
Year 2020, Volume: 8 Issue: 1, 869 - 879, 31.01.2020
https://doi.org/10.29130/dubited.589330

Abstract

References

  • [1] D. Ku, “Direct displacement analysis of a stewart platform mechanism,” Mechanism and Machine Theory, c. 34, s. 3, ss. 453-465, 1999.
  • [2] H. Alp, “Sezgisel yöntemlerle paralel mekanizmaların çalışma uzayı analizi,” Doktora Tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2007.
  • [3] M. Weck and D. Staimer, “Parallel kinematic machine tools – current state and future potentials,” CIRP Annals - Manufacturing Technology, c. 51, s. 2, ss. 671-683, 2002.
  • [4] X. Hu, “Design and analysis of a three degrees of freedom parallel kinematic machine,” M. Sc. Thesis, The Faculty of Engineering and Applied Science Mechanical Engineering Program University of Ontario Institute of Technology, North Oshawa, 2008.
  • [5] S. Yiğit, “Paralel manipülatörlerin uzaysal vektör cebriyöntemiyle kinematik modellemesi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye, 2013.
  • [6] Y. Karabulut, “Dokunmatik ekranlı cihazlar için görüntü işlemeye dayalı robotik test otomasyon sistemi geliştirilmesi,” Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Manisa Celal Bayar Üniversitesi, Manisa, Türkiye, 2016.
  • [7] Y. Meng and Z. Zhuang, “Self-calibration of camera-equipped robot manipulators,” The International Journal of Robotics Research, c. 20, s. 11, ss. 909-921, 2001.
  • [8] M.R. Driels, L.W. Swayze and L.S. Potter, “Full-pose calibration of a robot manipulator using a coordinate-measuring machine,” The International Journal of Advanced Manufacturing Technology, c. 8, s. 1, ss. 34-44, 1993.
  • [9] C. Lightcap, S. Hamner, T. Schmitz and S. Banks, “Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration,” IEEE Transactions on Robotics, c. 24, s. 2, ss. 452-456, 2008.
  • [10] A. Nubiola, “Calibration of a serial robot using a laser tracker,” PhD Thesis, École De Technologie Supérieure, Canada, 2011.
  • [11] G. Mosqueira, J. Apetz, K.M. Santos, E. Villani, R. Suterio and L.G. Trabasso, “Analysis of the indoor GPS system as feedback for the robotic alignment of fuselages using laser radar measurements as comparison,” Robotics and Computer-Integrated Manufacturing, c. 28, ss. 700–709, 2012.
  • [12] M. Ayyıldız, “Esnek üretim sisteminde zeki yükleme ve depolama otomasyonu,” Doktora Tezi, Fen Bilimleri Enstitüsü, Karabük Üniversitesi, Karabük, Türkiye, 2016.
  • [13] E. Aşkar Ayyıldız, “Nümerik Kontrollü Çoklu Paralel Kinematik Mekanizmalar İçin Algoritma Geliştirme,” Doktora Tezi, Fen Bilimleri Enstitüsü, Karabük Üniversitesi, Karabük, Türkiye, 2017.
  • [14] R. Kelaiaia, O. Company and A. Zaatri, “Multiobjective optimization of a linear Delta parallel robot,” Mechanism and Machine Theory, c. 50, ss. 159–178, 2012.
  • [15] X. Liu, J. Wang, K. Oh and J. Kım, “A new approach to the design of a delta robot with a desired workspace,” Journal of Intelligent and Robotic Systems, c. 39, ss. 209–225, 2004.
  • [16] Righettini P., Tasora A. and Giberti H., “Mechatronic design of a 3-DOF parallel translational manipulator”, RAAD 11th workshop on robotics in alpe-adria-danube region, Hungary, 2002, ss. 1-6.
  • [17] F. Xie, X. Liu and J. Wang, “Conceptual design and optimization of a 3-DoF parallel mechanism for a turbine blade grinding machine,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, c. 230, s. 3, ss. 406-413, 2016.
  • [18] O. Company and F. Pierrot, “Modelling and design issues of a 3-axis parallel machine-tool,” Mechanism and Machine Theory, c. 37, ss. 1325–1345, 2002.
  • [19] E. Aşkar Ayyıldız and M. Ayyıldız, “Development of a 3-axis parallel kinematic machine for milling wood material–Part 1: Design,” BioResources, c. 12, s. 4, ss. 9326-9337, 2017.
  • [20] P.S. Shiakolas, K.L. Conrad and T.C. Yih, “On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots,” International Journal of Modelling and Simulation, c. 22, s. 3, ss. 1-10, 2002.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Ayyıldız 0000-0002-4534-6713

Elmas Aşkar Ayyıldız 0000-0002-8622-3533

Publication Date January 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Ayyıldız, M., & Aşkar Ayyıldız, E. (2020). Lineer Delta Robotun Doğruluk ve Tekrarlanabilirlik Performansı. Duzce University Journal of Science and Technology, 8(1), 869-879. https://doi.org/10.29130/dubited.589330
AMA Ayyıldız M, Aşkar Ayyıldız E. Lineer Delta Robotun Doğruluk ve Tekrarlanabilirlik Performansı. DUBİTED. January 2020;8(1):869-879. doi:10.29130/dubited.589330
Chicago Ayyıldız, Mustafa, and Elmas Aşkar Ayyıldız. “Lineer Delta Robotun Doğruluk Ve Tekrarlanabilirlik Performansı”. Duzce University Journal of Science and Technology 8, no. 1 (January 2020): 869-79. https://doi.org/10.29130/dubited.589330.
EndNote Ayyıldız M, Aşkar Ayyıldız E (January 1, 2020) Lineer Delta Robotun Doğruluk ve Tekrarlanabilirlik Performansı. Duzce University Journal of Science and Technology 8 1 869–879.
IEEE M. Ayyıldız and E. Aşkar Ayyıldız, “Lineer Delta Robotun Doğruluk ve Tekrarlanabilirlik Performansı”, DUBİTED, vol. 8, no. 1, pp. 869–879, 2020, doi: 10.29130/dubited.589330.
ISNAD Ayyıldız, Mustafa - Aşkar Ayyıldız, Elmas. “Lineer Delta Robotun Doğruluk Ve Tekrarlanabilirlik Performansı”. Duzce University Journal of Science and Technology 8/1 (January 2020), 869-879. https://doi.org/10.29130/dubited.589330.
JAMA Ayyıldız M, Aşkar Ayyıldız E. Lineer Delta Robotun Doğruluk ve Tekrarlanabilirlik Performansı. DUBİTED. 2020;8:869–879.
MLA Ayyıldız, Mustafa and Elmas Aşkar Ayyıldız. “Lineer Delta Robotun Doğruluk Ve Tekrarlanabilirlik Performansı”. Duzce University Journal of Science and Technology, vol. 8, no. 1, 2020, pp. 869-7, doi:10.29130/dubited.589330.
Vancouver Ayyıldız M, Aşkar Ayyıldız E. Lineer Delta Robotun Doğruluk ve Tekrarlanabilirlik Performansı. DUBİTED. 2020;8(1):869-7.