Research Article
BibTex RIS Cite

Mikrodeformasyon ile Yüzey Özellikleri Değiştirilen 316L Paslanmaz Çeliğin Sentetik Vücut Sıvısı ile Etkileşimi

Year 2020, Volume: 8 Issue: 4, 2455 - 2467, 29.10.2020
https://doi.org/10.29130/dubited.707023

Abstract

Bu çalışmada ortopedik uygulamalarda yaygın olarak kullanılan bir biyomedikal alaşım olan 316L paslanmaz çelik yüzeyinde mikro sertlik ölçüm cihazı kullanılarak mikrodeformasyon alanları oluşturulmuş ve elde edilen farklı yüzey desenlerinin biyouyumluluğa etkisi sentetik vücut sıvısı içi statik daldırma deneyleri ile test edilmiştir. 7 ve 21 günlük daldırma periyotlarının ardından örnek yüzeyleri oksit ve kalsiyum-fosfatlı yapıların çökelmesi, sıvılar ise iyon salımı açısından incelendiğinde, her iki açıdan da oluşturulan farklı mikrodeformasyon desenlerinin kontrol numunesine kıyasla iyileştirme sağladığı saptanıştır. Oluşturulan desenler arasında ise iz boyutu büyük, izler arası mesafesi geniş olan paternin optimum özellikleri sağlayan yüzey olduğu gözlenmiştir. Yüzey pürüzlülüğü ve sıvı içi oksit ve kalsiyum-fosfatlı yapıların çökelmesi arasında bir doğru orantı tespit edilememiş, bu da yüzey enerjisini belirlemede mikrodeformasyonun mikroyapısal mekanizmalar üzerindeki etkisinin daha belirleyici olabileceğine dair ön bulgular ortaya koymuştur.

Supporting Institution

Bu çalışma Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir.

Project Number

ESOGÜ BAP 2018/15038

References

  • [1] R. Agarwal, A.J. García, “Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair,” Advanced Drug Delivery Reviews, vol. 94, no. 1, pp. 53–62, 2015.
  • [2] N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, Kurniawan T, M.H. Ismail, M.H.I. Ibrahim, “Study of corrosion in biocompatible metals for implants: A review,” Journal of Alloys Compounds, vol. 701, no. 1, pp. 698-715, 2017.
  • [3] S.M. Toker, D. Canadinc, H.J. Maier, O. Birer “Evaluation of passive oxide layer formation–biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency,” Materials Science and Engineering C, vol. 36, no.1, pp. 118-119, 2014.
  • [4] T. Lu, J. Wen, S. Qian, H. Cao, C. Ning, X. Pan, Jiang X, X. Liu, P.K. Chu, “Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus,” Biomaterials, vol. 51, no. 1, pp. 173-183, 2015.
  • [5] G. Uzun, F. Keyf, “Surface Characteristics Of The Implant Systems And Osseointegration,” Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 2, no. 1, pp. 43-50, 2007.
  • [6] C. Şahin, C. Korkmaz, G. Uzun, “Osseointegration, Surface Porosity And Nanotechnology,” Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, Supplement, vol. 13, no.1, pp. 174-181, 2015.
  • [7] Y. Hayran, N. Akbulut, M.K. Tümer, “Surface Treatment Technologies of Dental Implants,” Gaziosmanpaşa Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 2, no. 2, pp. 98-105, 2016.
  • [8] E. Ünal, M, Özçatal, Ş. Taktak, A. Evcin, Y. Kayalı, “Surface Modification of Pure Titanium Implant Using Acid and Alkali Treatments,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 15, no. 3, pp. 6-13, 2015.
  • [9] B. Yılmaz, Z. Evis, M. Güldiken “Biomimetic Calcium Phosphate Coating Of Titanium Alloy,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 29, no.1, pp. 105-109, 2014.
  • [10] M. İzmir, Y. Tufan, B. Ercan “Interaction of anodized Ti6Al7Nb with simulated body fluid,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 34, no.1, pp. 495-503, 2019.
  • [11] S.M. Toker, D. Canadinc, A. Taube, H.J. Maier, G. Gerstein “On the Role of Slip – Twin Interactions on the Impact Behavior of High-Manganese Austenitic Steels,” Materials Science and Engineering A, vol. 593, no. 1, pp. 120–126, 2014.
  • [12] S.M. Toker, F. Rubitschek, T. Niendorf, D. Canadinc, H.J. Maier. “Anisotropy of ultrafine-grained alloys under impact loading: The case of biomedical niobium–zirconium,” Scripta Materialia, vol. 66, no. 7, pp. 435–438, 2012.
  • [13] K. Anselme, M. Bigerelle, B. Noël, A. Lost, P. Hardouin “Effect of grooved titanium substratum on human osteoblastic cell growth,” Journal of Biomedical Materials Research, vol. 60, no. 4, pp. 529-540, 2002.
  • [14] C. Wu, M. Chen, T. Zheng, X. Yang, “Effect of surface roughness on the initial response of MC3T3-E1 cells cultured on polished titanium alloy,” Bio-Medical Materials and Engineering, c. 26, s. 1, ss. 155-164, 2015.
  • [15] L. Le Guehennec, M.A. Lopez-Heredia, B. Enkel, P. Weiss, Y. Amouriq, P. Layrolle, “Osteoblastic cell behaviour on different titanium implant surfaces,” Acta Biomaterialia, vol. 4, no. 1, pp. 535–543, 2008.
  • [16] S.M. Toker, G. Sugerman, E.C. Frey, “Effects of Surface Characteristics on the in Vitro Biocompatibility Response of NiTi Shape Memory Alloys,” Academic Platform Journal of Engineering and Science, vol. 7, no. 2, pp. 112-116, 2019.
  • [17] Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok “Accelerated growth of preosteoblastic cells on ultrafine grained titanium,” Journal of Biomedical Materials Research A, vol. 90, no. 4, pp. 1239-1242, 2008.
  • [18] P.K.C. Venkatsurya, W.W. Thein-Han, R.D.K. Misra, M.C. Somani, L.P. Karjalainen “Advancing nanograined/ultrafine-grained structures for metal implant technology: Interplay between grooving of nano/ultrafine grains and cellular response,” Materials Science and Engineering C, vol. 30, no. 1, pp. 1050-1059, 2010.
  • [19] S.M. Toker, G. Gerstein, H.J. Maier, D. Canadinc “Effects of microstructural mechanisms on the localized oxidation behavior of NiTi shape memory alloys in simulated body fluid,” Journal of Materials Science, vol. 53, no. 2, pp. 948-958, 2018.
  • [20] B. Uzer, S.M. Toker, A. Cingoz, T. Bagci-Onder, G. Gerstein, H.J. Maier, D. Canadinc “An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials,” Journal Of The Mechanical Behavior Of Biomedical Materials, vol. 60, no. 1, pp. 177-186, 2016.
  • [21] B. Yilmaz, A.E. Pazarceviren, A. Tezcaner, Z. Evis, “Historical Development of Simulated Body Fluids Used in Biomedical Applications: A Review,” Microchemical Journal, vol. 155, no. 1, pp. 1-49, 2020.
  • [22] T. Kokubo, H. Takadama “How useful is SBF in predicting in vivo bone bioactivity?,” Biomaterials, vol. 27, no. 1, pp. 2907-2915, 2006.
  • [23] B. Uzer, “Modulating The Surface Properties Of Metallic Implants And The Response Of Breast Cancer Cells By Surface Relief Induced Via Bulk Plastic Deformation,” Frontiers in Materials, vol.99, no.7, pp. 1-10, 2020.
  • [24] R.R. Behera, A. Das, A. Hasan, D. Pamu, L.M. Pandey, M.R. Sankar, “Deposition of biphasic calcium phosphate film on laser surface textured Ti-6Al-4V and its effect on different biological properties for orthopedic applications,” Journal of Alloys and Compounds, In press, pp. 1-50, 2020. https://doi.org/10.1016/j.jallcom.2020.155683.
  • [25] T. Hanawa, “Titanium–Tissue Interface Reaction and Its Control With Surface Treatment,” Frontiers in Bioengineering and Biotechnology, vol.170, no.7, pp. 1-13, 2019.
  • [26] H.W. Yuen, W. Becker. “Iron Toxicity”. Treasure Island, FL, USA: StatPearls Publishing; 2020. (Accessed June 22, 2020. ) [Online].Available: https://www.ncbi.nlm.nih.gov/books/NBK459224/
  • [27] H.H. Huang, Y.H. Chiu, T.H. Lee, S.C. Wu, H.W. Yang, K.H. Su, C.C. Hsu, “Ion release from NiTi orthodontic wires in artificial saliva with various acidities,” Biomaterials, vol.24, no.1, pp. 3585-3592, 2003.
  • [28] G.S. Matharu, M. Res, F. Berryman, A. Judge, A. Reito, J. McConnell, O. Lainiala, S. Young, A. Eskelinen, H.G. Pandit, D. Phil, D. W. Murray, “Blood Metal Ion Thresholds to Identify Patients with Metal-on-Metal Hip Implants at Risk of Adverse Reactions to Metal Debris,” The Journal Of Bone & Joınt Surgery, vol.99-A, no.18, pp. 1532-1539, 2017.
  • [29] A. Hordyjewska, Ł. Popiołek, J. Kocot, “The many ‘‘faces’’ of copper in medicine and treatment,” Biometals, vol.27,no.1, pp. 611-621, 2014.
Year 2020, Volume: 8 Issue: 4, 2455 - 2467, 29.10.2020
https://doi.org/10.29130/dubited.707023

Abstract

Project Number

ESOGÜ BAP 2018/15038

References

  • [1] R. Agarwal, A.J. García, “Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair,” Advanced Drug Delivery Reviews, vol. 94, no. 1, pp. 53–62, 2015.
  • [2] N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, Kurniawan T, M.H. Ismail, M.H.I. Ibrahim, “Study of corrosion in biocompatible metals for implants: A review,” Journal of Alloys Compounds, vol. 701, no. 1, pp. 698-715, 2017.
  • [3] S.M. Toker, D. Canadinc, H.J. Maier, O. Birer “Evaluation of passive oxide layer formation–biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency,” Materials Science and Engineering C, vol. 36, no.1, pp. 118-119, 2014.
  • [4] T. Lu, J. Wen, S. Qian, H. Cao, C. Ning, X. Pan, Jiang X, X. Liu, P.K. Chu, “Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus,” Biomaterials, vol. 51, no. 1, pp. 173-183, 2015.
  • [5] G. Uzun, F. Keyf, “Surface Characteristics Of The Implant Systems And Osseointegration,” Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 2, no. 1, pp. 43-50, 2007.
  • [6] C. Şahin, C. Korkmaz, G. Uzun, “Osseointegration, Surface Porosity And Nanotechnology,” Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, Supplement, vol. 13, no.1, pp. 174-181, 2015.
  • [7] Y. Hayran, N. Akbulut, M.K. Tümer, “Surface Treatment Technologies of Dental Implants,” Gaziosmanpaşa Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 2, no. 2, pp. 98-105, 2016.
  • [8] E. Ünal, M, Özçatal, Ş. Taktak, A. Evcin, Y. Kayalı, “Surface Modification of Pure Titanium Implant Using Acid and Alkali Treatments,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, vol. 15, no. 3, pp. 6-13, 2015.
  • [9] B. Yılmaz, Z. Evis, M. Güldiken “Biomimetic Calcium Phosphate Coating Of Titanium Alloy,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 29, no.1, pp. 105-109, 2014.
  • [10] M. İzmir, Y. Tufan, B. Ercan “Interaction of anodized Ti6Al7Nb with simulated body fluid,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 34, no.1, pp. 495-503, 2019.
  • [11] S.M. Toker, D. Canadinc, A. Taube, H.J. Maier, G. Gerstein “On the Role of Slip – Twin Interactions on the Impact Behavior of High-Manganese Austenitic Steels,” Materials Science and Engineering A, vol. 593, no. 1, pp. 120–126, 2014.
  • [12] S.M. Toker, F. Rubitschek, T. Niendorf, D. Canadinc, H.J. Maier. “Anisotropy of ultrafine-grained alloys under impact loading: The case of biomedical niobium–zirconium,” Scripta Materialia, vol. 66, no. 7, pp. 435–438, 2012.
  • [13] K. Anselme, M. Bigerelle, B. Noël, A. Lost, P. Hardouin “Effect of grooved titanium substratum on human osteoblastic cell growth,” Journal of Biomedical Materials Research, vol. 60, no. 4, pp. 529-540, 2002.
  • [14] C. Wu, M. Chen, T. Zheng, X. Yang, “Effect of surface roughness on the initial response of MC3T3-E1 cells cultured on polished titanium alloy,” Bio-Medical Materials and Engineering, c. 26, s. 1, ss. 155-164, 2015.
  • [15] L. Le Guehennec, M.A. Lopez-Heredia, B. Enkel, P. Weiss, Y. Amouriq, P. Layrolle, “Osteoblastic cell behaviour on different titanium implant surfaces,” Acta Biomaterialia, vol. 4, no. 1, pp. 535–543, 2008.
  • [16] S.M. Toker, G. Sugerman, E.C. Frey, “Effects of Surface Characteristics on the in Vitro Biocompatibility Response of NiTi Shape Memory Alloys,” Academic Platform Journal of Engineering and Science, vol. 7, no. 2, pp. 112-116, 2019.
  • [17] Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok “Accelerated growth of preosteoblastic cells on ultrafine grained titanium,” Journal of Biomedical Materials Research A, vol. 90, no. 4, pp. 1239-1242, 2008.
  • [18] P.K.C. Venkatsurya, W.W. Thein-Han, R.D.K. Misra, M.C. Somani, L.P. Karjalainen “Advancing nanograined/ultrafine-grained structures for metal implant technology: Interplay between grooving of nano/ultrafine grains and cellular response,” Materials Science and Engineering C, vol. 30, no. 1, pp. 1050-1059, 2010.
  • [19] S.M. Toker, G. Gerstein, H.J. Maier, D. Canadinc “Effects of microstructural mechanisms on the localized oxidation behavior of NiTi shape memory alloys in simulated body fluid,” Journal of Materials Science, vol. 53, no. 2, pp. 948-958, 2018.
  • [20] B. Uzer, S.M. Toker, A. Cingoz, T. Bagci-Onder, G. Gerstein, H.J. Maier, D. Canadinc “An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials,” Journal Of The Mechanical Behavior Of Biomedical Materials, vol. 60, no. 1, pp. 177-186, 2016.
  • [21] B. Yilmaz, A.E. Pazarceviren, A. Tezcaner, Z. Evis, “Historical Development of Simulated Body Fluids Used in Biomedical Applications: A Review,” Microchemical Journal, vol. 155, no. 1, pp. 1-49, 2020.
  • [22] T. Kokubo, H. Takadama “How useful is SBF in predicting in vivo bone bioactivity?,” Biomaterials, vol. 27, no. 1, pp. 2907-2915, 2006.
  • [23] B. Uzer, “Modulating The Surface Properties Of Metallic Implants And The Response Of Breast Cancer Cells By Surface Relief Induced Via Bulk Plastic Deformation,” Frontiers in Materials, vol.99, no.7, pp. 1-10, 2020.
  • [24] R.R. Behera, A. Das, A. Hasan, D. Pamu, L.M. Pandey, M.R. Sankar, “Deposition of biphasic calcium phosphate film on laser surface textured Ti-6Al-4V and its effect on different biological properties for orthopedic applications,” Journal of Alloys and Compounds, In press, pp. 1-50, 2020. https://doi.org/10.1016/j.jallcom.2020.155683.
  • [25] T. Hanawa, “Titanium–Tissue Interface Reaction and Its Control With Surface Treatment,” Frontiers in Bioengineering and Biotechnology, vol.170, no.7, pp. 1-13, 2019.
  • [26] H.W. Yuen, W. Becker. “Iron Toxicity”. Treasure Island, FL, USA: StatPearls Publishing; 2020. (Accessed June 22, 2020. ) [Online].Available: https://www.ncbi.nlm.nih.gov/books/NBK459224/
  • [27] H.H. Huang, Y.H. Chiu, T.H. Lee, S.C. Wu, H.W. Yang, K.H. Su, C.C. Hsu, “Ion release from NiTi orthodontic wires in artificial saliva with various acidities,” Biomaterials, vol.24, no.1, pp. 3585-3592, 2003.
  • [28] G.S. Matharu, M. Res, F. Berryman, A. Judge, A. Reito, J. McConnell, O. Lainiala, S. Young, A. Eskelinen, H.G. Pandit, D. Phil, D. W. Murray, “Blood Metal Ion Thresholds to Identify Patients with Metal-on-Metal Hip Implants at Risk of Adverse Reactions to Metal Debris,” The Journal Of Bone & Joınt Surgery, vol.99-A, no.18, pp. 1532-1539, 2017.
  • [29] A. Hordyjewska, Ł. Popiołek, J. Kocot, “The many ‘‘faces’’ of copper in medicine and treatment,” Biometals, vol.27,no.1, pp. 611-621, 2014.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sıdıka Mine Toker 0000-0003-0762-242X

Eray Battal 0000-0002-3201-2335

Zeynep Demir 0000-0002-6232-0638

Kamile Ezgi Çevik 0000-0003-0233-1367

Project Number ESOGÜ BAP 2018/15038
Publication Date October 29, 2020
Published in Issue Year 2020 Volume: 8 Issue: 4

Cite

APA Toker, S. M., Battal, E., Demir, Z., Çevik, K. E. (2020). Mikrodeformasyon ile Yüzey Özellikleri Değiştirilen 316L Paslanmaz Çeliğin Sentetik Vücut Sıvısı ile Etkileşimi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 8(4), 2455-2467. https://doi.org/10.29130/dubited.707023
AMA Toker SM, Battal E, Demir Z, Çevik KE. Mikrodeformasyon ile Yüzey Özellikleri Değiştirilen 316L Paslanmaz Çeliğin Sentetik Vücut Sıvısı ile Etkileşimi. DUBİTED. October 2020;8(4):2455-2467. doi:10.29130/dubited.707023
Chicago Toker, Sıdıka Mine, Eray Battal, Zeynep Demir, and Kamile Ezgi Çevik. “Mikrodeformasyon Ile Yüzey Özellikleri Değiştirilen 316L Paslanmaz Çeliğin Sentetik Vücut Sıvısı Ile Etkileşimi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 8, no. 4 (October 2020): 2455-67. https://doi.org/10.29130/dubited.707023.
EndNote Toker SM, Battal E, Demir Z, Çevik KE (October 1, 2020) Mikrodeformasyon ile Yüzey Özellikleri Değiştirilen 316L Paslanmaz Çeliğin Sentetik Vücut Sıvısı ile Etkileşimi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8 4 2455–2467.
IEEE S. M. Toker, E. Battal, Z. Demir, and K. E. Çevik, “Mikrodeformasyon ile Yüzey Özellikleri Değiştirilen 316L Paslanmaz Çeliğin Sentetik Vücut Sıvısı ile Etkileşimi”, DUBİTED, vol. 8, no. 4, pp. 2455–2467, 2020, doi: 10.29130/dubited.707023.
ISNAD Toker, Sıdıka Mine et al. “Mikrodeformasyon Ile Yüzey Özellikleri Değiştirilen 316L Paslanmaz Çeliğin Sentetik Vücut Sıvısı Ile Etkileşimi”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 8/4 (October 2020), 2455-2467. https://doi.org/10.29130/dubited.707023.
JAMA Toker SM, Battal E, Demir Z, Çevik KE. Mikrodeformasyon ile Yüzey Özellikleri Değiştirilen 316L Paslanmaz Çeliğin Sentetik Vücut Sıvısı ile Etkileşimi. DUBİTED. 2020;8:2455–2467.
MLA Toker, Sıdıka Mine et al. “Mikrodeformasyon Ile Yüzey Özellikleri Değiştirilen 316L Paslanmaz Çeliğin Sentetik Vücut Sıvısı Ile Etkileşimi”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 8, no. 4, 2020, pp. 2455-67, doi:10.29130/dubited.707023.
Vancouver Toker SM, Battal E, Demir Z, Çevik KE. Mikrodeformasyon ile Yüzey Özellikleri Değiştirilen 316L Paslanmaz Çeliğin Sentetik Vücut Sıvısı ile Etkileşimi. DUBİTED. 2020;8(4):2455-67.