Research Article
BibTex RIS Cite

3 Fazlı Asenkron Motorun Farklı Çalışma Koşulları Altındaki Tepkisinin Vektör Kontrol Tekniği ile Analizi

Year 2020, Volume: 8 Issue: 4, 2430 - 2442, 29.10.2020
https://doi.org/10.29130/dubited.763938

Abstract

Asenkron motorlar yaygın kullanım alanlarına sahiptir. Tasarımları güvenilir ve ucuz olmasıyla birlikte kontrolü zordur. Bu nedenle kontrol sistemini basitleştirmek amacıyla çeşitli sistemler geliştirilmiştir. Bu sistemlerden birisi de Vektör Kontrol (Alan Yönlendirmeli Kontrol) dür. Bu çalışmada 3 fazlı sincap kafesli bir asenkron motorun doğrudan, kapalı çevrim, vektör kontrol tasarımı Matlab/Simulink ortamında yapılmıştır. Belirlenen sabit bir referans hıza ulaşma durumu, belirli aralıklarla değişen referans hızlara ulaşma durumu, devreye yük alındığı durumda daha önce belirlenmiş referans hıza tekrar ulaşma durumu gibi durumlar incelenmiş ve asenkron motorun referans hızlara rahatlıkla ulaştığı görülmüştür. Tasarımın doğruluğu ve işe yararlığı ispatlanmıştır.

References

  • [1] R. Krishnan, Electric Motor Drives, New Jersey, USA: PrenticeHall, 2001, pp. 411-426.
  • [2] P. Rakesh, “AC induction motor fundamentals,” Microchip Technology Inc, Arizona, USA, Rep. DS00887A, 2003, pp. 1-24.
  • [3] B. S. Naik, “Comparision of direct and indirect vector control of induction motor,” International Journal of New Technologies in Science and Engineering (IJNTSE), vol. 1, no. 1, pp. 110-131, 2014.
  • [4] M. P. Kazmierkowski, and H. Kopcke. “Simple control system for current source inverter-fed induction motor drives,” IEEE transactions on industry applications, vol. IA-21, no. 3, pp. 617-623, 1985.
  • [5] W. Tao, and Z. Liang, “Simulation of vector control frequency converter of induction motor based on Matlab/Simulink,” 2011 Third International Conference on Measuring Technology and Mechatronics Automation Conference, Shangshai, China, Jan. 2011, pp. 265-268.
  • [6] S. S. Aung, and T. N. Htun. “Speed control system of induction motor by using vector control method,” International Journal of New Technologies in Science and Engineering (IJNTSE), vol. 3, no. 5, pp. 2254-2257, 2019.
  • [7] S. Goyat, and R. Ahuja. “Speed control of induction motor using vector or field oriented control,” International Journal of Advances in Engineering & Technology, vol. 4, no. 1, pp. 475-482, 2012.
  • [8] A. Kumar and T. Ramesh “Direct field oriented control of induction motor drive,” 2015 Second International Conference on Advances in Computing and Communication Engineering, Dehradun, India, May. 2015, pp. 219-223.
  • [9] S. N. Vukosavic, and M. R. Stojic. “On-line tuning of the rotor time constant for vector-controlled induction motor in position control applications,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 130-138, 1993.
  • [10] M. Benhaddadi, K. Yazid, and R. Khaldi. “An effective identification of rotor resistance for induction motor vector control,” IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings, Ottawa, Ontario, Canada, May, 1997, pp. 339-342.
  • [11] Y. Kim, S. Sul, and M. Park. “Speed sensorless vector control of induction motor using extended Kalman filter,” IEEE Transactions on Industry Applications, vol. 30, no. 5, pp. 1225-1233, 1994.
  • [12] S. Kim, et al. “Speed-sensorless vector control of an induction motor using neural network speed estimation,” IEEE Transactions on industrial electronics, vol. 48, no. 3, pp. 609-614, 2001.
  • [13] A. Hashim, “Speed sensorless vector control of induction motors using rotor flux based model reference adaptive system,” Journal of Engineering and Computer Science (JECS), vol. 16, no. 3, pp. 1-4, 2015.
  • [14] I. Benlaloui, et al. “Implementation of a new MRAS speed sensorless vector control of induction machine,” IEEE Transactions on Energy Conversion, vol. 30, no. 2, pp. 588-595, 2014.

Analysis of 3 Phase Asynchronous Motor with Vector Control Technique Under Different Operating Conditions

Year 2020, Volume: 8 Issue: 4, 2430 - 2442, 29.10.2020
https://doi.org/10.29130/dubited.763938

Abstract

Asynchronous motors have wide usage areas. Its designs are reliable and cheap, but control is difficult. Therefore, various systems have been developed to simplify the control system. One of these systems is Vector Control (Field Oriented Control). In this study, the direct, closed loop, vector control design of a 3 phase squirrel cage asynchronous motor was made in Matlab / Simulink environment. The conditions such as reaching a specified fixed reference speed, the situation of reaching the reference speed changing at certain intervals, the situation of reaching the previously determined reference speed when the load is switched on were examined and it was seen that the asynchronous motor reached the reference speeds easily. The accuracy and usefulness of the design has been proven.

References

  • [1] R. Krishnan, Electric Motor Drives, New Jersey, USA: PrenticeHall, 2001, pp. 411-426.
  • [2] P. Rakesh, “AC induction motor fundamentals,” Microchip Technology Inc, Arizona, USA, Rep. DS00887A, 2003, pp. 1-24.
  • [3] B. S. Naik, “Comparision of direct and indirect vector control of induction motor,” International Journal of New Technologies in Science and Engineering (IJNTSE), vol. 1, no. 1, pp. 110-131, 2014.
  • [4] M. P. Kazmierkowski, and H. Kopcke. “Simple control system for current source inverter-fed induction motor drives,” IEEE transactions on industry applications, vol. IA-21, no. 3, pp. 617-623, 1985.
  • [5] W. Tao, and Z. Liang, “Simulation of vector control frequency converter of induction motor based on Matlab/Simulink,” 2011 Third International Conference on Measuring Technology and Mechatronics Automation Conference, Shangshai, China, Jan. 2011, pp. 265-268.
  • [6] S. S. Aung, and T. N. Htun. “Speed control system of induction motor by using vector control method,” International Journal of New Technologies in Science and Engineering (IJNTSE), vol. 3, no. 5, pp. 2254-2257, 2019.
  • [7] S. Goyat, and R. Ahuja. “Speed control of induction motor using vector or field oriented control,” International Journal of Advances in Engineering & Technology, vol. 4, no. 1, pp. 475-482, 2012.
  • [8] A. Kumar and T. Ramesh “Direct field oriented control of induction motor drive,” 2015 Second International Conference on Advances in Computing and Communication Engineering, Dehradun, India, May. 2015, pp. 219-223.
  • [9] S. N. Vukosavic, and M. R. Stojic. “On-line tuning of the rotor time constant for vector-controlled induction motor in position control applications,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 130-138, 1993.
  • [10] M. Benhaddadi, K. Yazid, and R. Khaldi. “An effective identification of rotor resistance for induction motor vector control,” IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking. IMTC Proceedings, Ottawa, Ontario, Canada, May, 1997, pp. 339-342.
  • [11] Y. Kim, S. Sul, and M. Park. “Speed sensorless vector control of induction motor using extended Kalman filter,” IEEE Transactions on Industry Applications, vol. 30, no. 5, pp. 1225-1233, 1994.
  • [12] S. Kim, et al. “Speed-sensorless vector control of an induction motor using neural network speed estimation,” IEEE Transactions on industrial electronics, vol. 48, no. 3, pp. 609-614, 2001.
  • [13] A. Hashim, “Speed sensorless vector control of induction motors using rotor flux based model reference adaptive system,” Journal of Engineering and Computer Science (JECS), vol. 16, no. 3, pp. 1-4, 2015.
  • [14] I. Benlaloui, et al. “Implementation of a new MRAS speed sensorless vector control of induction machine,” IEEE Transactions on Energy Conversion, vol. 30, no. 2, pp. 588-595, 2014.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Muhammet Demirbaş 0000-0002-5223-1279

Mustafa Dursun 0000-0001-9952-9358

Publication Date October 29, 2020
Published in Issue Year 2020 Volume: 8 Issue: 4

Cite

APA Demirbaş, M., & Dursun, M. (2020). 3 Fazlı Asenkron Motorun Farklı Çalışma Koşulları Altındaki Tepkisinin Vektör Kontrol Tekniği ile Analizi. Duzce University Journal of Science and Technology, 8(4), 2430-2442. https://doi.org/10.29130/dubited.763938
AMA Demirbaş M, Dursun M. 3 Fazlı Asenkron Motorun Farklı Çalışma Koşulları Altındaki Tepkisinin Vektör Kontrol Tekniği ile Analizi. DUBİTED. October 2020;8(4):2430-2442. doi:10.29130/dubited.763938
Chicago Demirbaş, Muhammet, and Mustafa Dursun. “3 Fazlı Asenkron Motorun Farklı Çalışma Koşulları Altındaki Tepkisinin Vektör Kontrol Tekniği Ile Analizi”. Duzce University Journal of Science and Technology 8, no. 4 (October 2020): 2430-42. https://doi.org/10.29130/dubited.763938.
EndNote Demirbaş M, Dursun M (October 1, 2020) 3 Fazlı Asenkron Motorun Farklı Çalışma Koşulları Altındaki Tepkisinin Vektör Kontrol Tekniği ile Analizi. Duzce University Journal of Science and Technology 8 4 2430–2442.
IEEE M. Demirbaş and M. Dursun, “3 Fazlı Asenkron Motorun Farklı Çalışma Koşulları Altındaki Tepkisinin Vektör Kontrol Tekniği ile Analizi”, DUBİTED, vol. 8, no. 4, pp. 2430–2442, 2020, doi: 10.29130/dubited.763938.
ISNAD Demirbaş, Muhammet - Dursun, Mustafa. “3 Fazlı Asenkron Motorun Farklı Çalışma Koşulları Altındaki Tepkisinin Vektör Kontrol Tekniği Ile Analizi”. Duzce University Journal of Science and Technology 8/4 (October 2020), 2430-2442. https://doi.org/10.29130/dubited.763938.
JAMA Demirbaş M, Dursun M. 3 Fazlı Asenkron Motorun Farklı Çalışma Koşulları Altındaki Tepkisinin Vektör Kontrol Tekniği ile Analizi. DUBİTED. 2020;8:2430–2442.
MLA Demirbaş, Muhammet and Mustafa Dursun. “3 Fazlı Asenkron Motorun Farklı Çalışma Koşulları Altındaki Tepkisinin Vektör Kontrol Tekniği Ile Analizi”. Duzce University Journal of Science and Technology, vol. 8, no. 4, 2020, pp. 2430-42, doi:10.29130/dubited.763938.
Vancouver Demirbaş M, Dursun M. 3 Fazlı Asenkron Motorun Farklı Çalışma Koşulları Altındaki Tepkisinin Vektör Kontrol Tekniği ile Analizi. DUBİTED. 2020;8(4):2430-42.