Research Article
BibTex RIS Cite

Bazı Genelleştirilmiş Sabit Çember Sonuçları Üzerine

Year 2024, Volume: 12 Issue: 1, 510 - 521, 26.01.2024
https://doi.org/10.29130/dubited.1258967

Abstract

Bu çalışmada, son zamanlarda üzerinde çalışılan bir açık problem olan “sabit çember problemi” için yeni sonuçlar araştırmaya çalışacağız. Bunun içinde literatürde var olan bazı bilinen daralma koşullarından esinleneceğiz. Bu anlamda, metrik uzaylar üzerinde JS-Ciric tipinde x0-daralma, JS-Hardy Rojers tipinde x0-daralma, JS-Reich tipinde x0-daralma ve JS-Chetterjea tipinde x0-daralma kavramlarını tanımlayacağız. Bu yeni daralma koşulları ile bazı sabit çember teoremleri ve sabit disk sonuçları elde edeceğiz. Son bölümde de, elde edilen teorik sonuçları gerçekleyen bazı örnekler vereceğiz.

References

  • [1] L. B. Ciric, “A generalization of Banach’s contraction principle,” Proceedings of the American Mathematical Society, vol. 45, no. 2, pp. 267—273, 1974.
  • [2] L. B. Ciric, “Generalized contractions and fixed-point theorems,” Publications de L’Institut Matheematique, vol. 12, no. 26, pp. 19—26, 1971.
  • [3] G. E. Hardy, and T. D. Rogers, “A generalization of a fixed point theorem of Reich”, Canadian Mathematical Bulletin, vol. 6, pp. 201—206, 1973.
  • [4] S. Reich, “Some remarks concerning contraction mappings,” Canadian Mathematical Bulletin, vol. 14, pp. 121—124, 1971.
  • [5] S. K. Chatterjea, “Fixed-point theorems,” Comptes Rendus de l 'Academie Bulgare des Sciences, vol. 25, pp. 727—730, 1972.
  • [6] N. Y. Özgür, and N. Taş, “Some fixed-circle theorems on metric spaces,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 42, no. 4, pp. 1433—1449, 2019.
  • [7] N. Y. Özgür, “Fixed-disc results via simulation functions,” Turkish Journal of Mathematics, vol. 43, no. 6, pp. 2794—2805, 2019.
  • [8] N., Taş, N. Y. Özgür, and N. Mlaiki, “New types of Fc-contractions and the fixed-circle problem,” Mathematics, vol. 6, pp. 188, 2018.
  • [9] N. Y. Özgür, and N. Taş, “Some fixed-circle theorems and discontinuity at fixed circle,” AIP Conference Proceedings, vol. 1926, no. 1, pp. 020048, 2018.
  • [10] R. K. Bisht, and N. Özgür, “Geometric properties of discontinuous fixed point set of   contractions and applications to neural networks,” Aequationes Mathematicae, vol. 94, no. 5, pp. 847—863, 2020.
  • [11] U. Çelik, and N. Özgür, “On the fixed-circle problem,” Facta Universitatis-Series Mathematics and Informatics, vol. 35, no. 5, pp. 1273—1290, 2020.
  • [12] N. Taş, and N. Özgür, “On the geometry of fixed points for self-mappings on S-metric spaces,” Communications de la Faculté des Sciences de l’Université d’Ankara. Séries A1. Mathematics and Statistics, vol. 69, no. 2, pp. 1184—1192, 2020.
  • [13] N. Özgür, and N. Taş, “Pata Zamfirescu type fixed-disc results with a proximal application,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 44, no. 4, pp. 2049—2061, 2021.
  • [14] K. Roy, and M. Saha, “Fixed point theorems for a class of extended JS contraction mappings over a generalized metric space with an application to fixed circle problem,” Proyecciones Journal of Mathematics, vol. 41, no. 6, pp. 1551—1572, 2022.
  • [15] N. Mlaiki, N. Taş, E. Kaplan, S. S. Aiadi, and A. K. Souayah, “Some common fixed-circle results on metric spaces,” Axioms, vol. 11, pp. 454, 2022.
  • [16] E. Kaplan, N. Mlaiki, N. Taş, S. Haque, and A. K. Souayah, “Some fixed-circle results with different auxiliary functions,” Journal of Function Spaces, vol. 2022, 7 pages, Article ID 2775733, 2022.
  • [17] D. Gopal, J. M. Moreno, and N. Özgür, “On fixed figure problems in fuzzy metric spaces,” Kybernetika, vol. 59, no. 1, pp. 110—129, 2023.
  • [18] E. Kaplan, “New fixed-circle results on fuzzy metric spaces with an application to dynamic market equilibrium,” Mathematica Moravica, vol. 27, no. 1, pp. 73—83, 2023.
  • [19] N. Hussain, V. Parvaneh, B. Samet, and C. Vetro, “Some fixed point theorems for generalized contractive mappings in complete metric spaces”, Fixed Point Theory and Applications, vol. 2015, pp. 185, 2015.
  • [20] M. Jleli, and B. Samet, “A new generalization of the Banach contraction principle”, Journal of Inequalities and Applications, vol. 2014, Article ID 38, 2014.
  • [21] M. Jleli, E. Karapınar, and B. Samet, “Further generalizations of the Banach contraction principle”, Journal of Inequalities and Applications, vol. 2014, Article ID 439, 2014.
Year 2024, Volume: 12 Issue: 1, 510 - 521, 26.01.2024
https://doi.org/10.29130/dubited.1258967

Abstract

References

  • [1] L. B. Ciric, “A generalization of Banach’s contraction principle,” Proceedings of the American Mathematical Society, vol. 45, no. 2, pp. 267—273, 1974.
  • [2] L. B. Ciric, “Generalized contractions and fixed-point theorems,” Publications de L’Institut Matheematique, vol. 12, no. 26, pp. 19—26, 1971.
  • [3] G. E. Hardy, and T. D. Rogers, “A generalization of a fixed point theorem of Reich”, Canadian Mathematical Bulletin, vol. 6, pp. 201—206, 1973.
  • [4] S. Reich, “Some remarks concerning contraction mappings,” Canadian Mathematical Bulletin, vol. 14, pp. 121—124, 1971.
  • [5] S. K. Chatterjea, “Fixed-point theorems,” Comptes Rendus de l 'Academie Bulgare des Sciences, vol. 25, pp. 727—730, 1972.
  • [6] N. Y. Özgür, and N. Taş, “Some fixed-circle theorems on metric spaces,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 42, no. 4, pp. 1433—1449, 2019.
  • [7] N. Y. Özgür, “Fixed-disc results via simulation functions,” Turkish Journal of Mathematics, vol. 43, no. 6, pp. 2794—2805, 2019.
  • [8] N., Taş, N. Y. Özgür, and N. Mlaiki, “New types of Fc-contractions and the fixed-circle problem,” Mathematics, vol. 6, pp. 188, 2018.
  • [9] N. Y. Özgür, and N. Taş, “Some fixed-circle theorems and discontinuity at fixed circle,” AIP Conference Proceedings, vol. 1926, no. 1, pp. 020048, 2018.
  • [10] R. K. Bisht, and N. Özgür, “Geometric properties of discontinuous fixed point set of   contractions and applications to neural networks,” Aequationes Mathematicae, vol. 94, no. 5, pp. 847—863, 2020.
  • [11] U. Çelik, and N. Özgür, “On the fixed-circle problem,” Facta Universitatis-Series Mathematics and Informatics, vol. 35, no. 5, pp. 1273—1290, 2020.
  • [12] N. Taş, and N. Özgür, “On the geometry of fixed points for self-mappings on S-metric spaces,” Communications de la Faculté des Sciences de l’Université d’Ankara. Séries A1. Mathematics and Statistics, vol. 69, no. 2, pp. 1184—1192, 2020.
  • [13] N. Özgür, and N. Taş, “Pata Zamfirescu type fixed-disc results with a proximal application,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 44, no. 4, pp. 2049—2061, 2021.
  • [14] K. Roy, and M. Saha, “Fixed point theorems for a class of extended JS contraction mappings over a generalized metric space with an application to fixed circle problem,” Proyecciones Journal of Mathematics, vol. 41, no. 6, pp. 1551—1572, 2022.
  • [15] N. Mlaiki, N. Taş, E. Kaplan, S. S. Aiadi, and A. K. Souayah, “Some common fixed-circle results on metric spaces,” Axioms, vol. 11, pp. 454, 2022.
  • [16] E. Kaplan, N. Mlaiki, N. Taş, S. Haque, and A. K. Souayah, “Some fixed-circle results with different auxiliary functions,” Journal of Function Spaces, vol. 2022, 7 pages, Article ID 2775733, 2022.
  • [17] D. Gopal, J. M. Moreno, and N. Özgür, “On fixed figure problems in fuzzy metric spaces,” Kybernetika, vol. 59, no. 1, pp. 110—129, 2023.
  • [18] E. Kaplan, “New fixed-circle results on fuzzy metric spaces with an application to dynamic market equilibrium,” Mathematica Moravica, vol. 27, no. 1, pp. 73—83, 2023.
  • [19] N. Hussain, V. Parvaneh, B. Samet, and C. Vetro, “Some fixed point theorems for generalized contractive mappings in complete metric spaces”, Fixed Point Theory and Applications, vol. 2015, pp. 185, 2015.
  • [20] M. Jleli, and B. Samet, “A new generalization of the Banach contraction principle”, Journal of Inequalities and Applications, vol. 2014, Article ID 38, 2014.
  • [21] M. Jleli, E. Karapınar, and B. Samet, “Further generalizations of the Banach contraction principle”, Journal of Inequalities and Applications, vol. 2014, Article ID 439, 2014.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Nihal Taş 0000-0002-4535-4019

Özlem Moralı Kızanlık 0000-0002-1693-1470

Publication Date January 26, 2024
Published in Issue Year 2024 Volume: 12 Issue: 1

Cite

APA Taş, N., & Kızanlık, Ö. M. (2024). Bazı Genelleştirilmiş Sabit Çember Sonuçları Üzerine. Duzce University Journal of Science and Technology, 12(1), 510-521. https://doi.org/10.29130/dubited.1258967
AMA Taş N, Kızanlık ÖM. Bazı Genelleştirilmiş Sabit Çember Sonuçları Üzerine. DUBİTED. January 2024;12(1):510-521. doi:10.29130/dubited.1258967
Chicago Taş, Nihal, and Özlem Moralı Kızanlık. “Bazı Genelleştirilmiş Sabit Çember Sonuçları Üzerine”. Duzce University Journal of Science and Technology 12, no. 1 (January 2024): 510-21. https://doi.org/10.29130/dubited.1258967.
EndNote Taş N, Kızanlık ÖM (January 1, 2024) Bazı Genelleştirilmiş Sabit Çember Sonuçları Üzerine. Duzce University Journal of Science and Technology 12 1 510–521.
IEEE N. Taş and Ö. M. Kızanlık, “Bazı Genelleştirilmiş Sabit Çember Sonuçları Üzerine”, DUBİTED, vol. 12, no. 1, pp. 510–521, 2024, doi: 10.29130/dubited.1258967.
ISNAD Taş, Nihal - Kızanlık, Özlem Moralı. “Bazı Genelleştirilmiş Sabit Çember Sonuçları Üzerine”. Duzce University Journal of Science and Technology 12/1 (January 2024), 510-521. https://doi.org/10.29130/dubited.1258967.
JAMA Taş N, Kızanlık ÖM. Bazı Genelleştirilmiş Sabit Çember Sonuçları Üzerine. DUBİTED. 2024;12:510–521.
MLA Taş, Nihal and Özlem Moralı Kızanlık. “Bazı Genelleştirilmiş Sabit Çember Sonuçları Üzerine”. Duzce University Journal of Science and Technology, vol. 12, no. 1, 2024, pp. 510-21, doi:10.29130/dubited.1258967.
Vancouver Taş N, Kızanlık ÖM. Bazı Genelleştirilmiş Sabit Çember Sonuçları Üzerine. DUBİTED. 2024;12(1):510-21.