Research Article
BibTex RIS Cite

Şarj İstasyonlarının Yardımıyla Dağıtık Üretim Yaklaşımı

Year 2024, Volume: 12 Issue: 4, 2262 - 2270, 23.10.2024
https://doi.org/10.29130/dubited.1445801

Abstract

Bu makale, dağıtık enerji üretimi (DG) ve şarj istasyonlarının entegrasyonundan kaynaklanan optimizasyon zorluklarına odaklanmaktadır. Özel bir nokta ise şarj istasyonlarının yalnızca elektrikli araç şarjını kolaylaştırmakla kalmayıp aynı zamanda aktif bir şekilde enerji tedarik etmeleridir. Convex Optimization (CVX) yöntemlerini kullanarak, çalışma, şarj istasyonlarını enerji tedarikçisi olarak dikkate alarak DG birimlerini koordine etmek ve kontrol etmek için optimizasyon problemlerini formüle etmekte ve çözmektedir. Bu yaklaşımın amacı, şebeke istikrarını artırmak ve enerji dağıtımını optimize etmektir. Bulgular, EV'lerin şebeke istikrarına önemli ölçüde katkıda bulunabileceğini, ancak bu faydaları optimize etmek için pilin bozulması ve gelişmiş pil yönetim sistemlerine (BMS) duyulan ihtiyaç gibi zorlukların ele alınması gerektiğini gösteriyor. Simülasyon sonuçları, şebeke istikrarında potansiyel bir iyileşme olduğunu, bu yenilikçi yaklaşımın vaadini ve pratik hususlarını göstermektedir.

References

  • [1] N. Hill, S. Amaral, S. Morgan-Price, T. Nokes, J. Bates, H. Helms, H. Fehrenbach, K. Biemann, N. Abdalla, J. Jöhrens et al., “Determining the environmental impacts of conventional and alternatively fuelled vehicles through lca,” Final Report for the European Commission, DG Climate Action, 2020.
  • [2] W.-Y. Lin, M.-C. Hsiao, P.-C. Wu, J. S. Fu, L.-W. Lai, and H.-C. Lai, “Analysis of air quality and health co-benefits regarding electricvehicle promotion coupled with power plant emissions,” Journal of Cleaner Production, vol. 247, p. 119152, 2020. [Online]. Available:https://www.sciencedirect.com/science/article/pii/S0959652619340223
  • [3] M. Muratori, M. Alexander, D. Arent, M. Bazilian, P. Cazzola, E. M. Dede, J. Farrell, C. Gearhart, D. Greene, A. Jenn et al., “The rise of electric vehicles—2020 status and future expectations,” Progress in Energy, vol. 3, no. 2, p. 022002, 2021.
  • [4] E. Elibol and O. Dikmen, “Long-term performance investigation of different solar panels in the west black sea region,” Clean Technologies and Environmental Policy, vol. 26, 11 2023.
  • [5] M.-K. Tran, A. Bhatti, R. Vrolyk, D. Wong, S. Panchal, M. Fowler, and R. Fraser, “A review of range extenders in battery electric vehicles: Current progress and future perspectives,” World Electric Vehicle Journal, vol. 12, no. 2, 2021. [Online]. Available: https: //www.mdpi.com/2032-6653/12/2/54.
  • [6] M. Schiffer and G. Walther, “The electric location routing problem with time windows and partial recharging,” European journal of operational research, vol. 260, no. 3, pp. 995–1013, 2017.
  • [7] A. Tavakoli, S. Saha, M. T. Arif, M. E. Haque, N. Mendis, and A. M. Oo, “Impacts of grid integration of solar pv and electric vehicle on grid stability, power quality and energy economics: a review,” IET Energy Systems Integration, vol. 2, no. 3, pp. 243–260, 2020. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/ 10.1049/iet-esi.2019.0047
  • [8] S. Pelletier, O. Jabali, and G. Laporte, “50th anniversary invited article—goods distribution with electric vehicles: review and research perspectives,” Transportation science, vol. 50, no. 1, pp. 3–22, 2016.
  • [9] F. Ahmad, A. Iqbal, I. Ashraf, M. Marzband, and I. khan, “Optimal location of electric vehicle charging station and its impact on distribution network: A review,” Energy Reports, vol. 8, pp. 2314– 2333, 2022. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S2352484722001809
  • [10] R. Yu, W. Zhong, S. Xie, C. Yuen, S. Gjessing, and Y. Zhang, “Balancing power demand through ev mobility in vehicle-to-grid mobile energy networks,” IEEE Transactions on Industrial Informatics, vol. 12, no. 1, pp. 79–90, Feb 2016.
  • [11] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5673–5689,2013.
  • [12] D. E. C. Barragán, B. A. A. Acurio, J. C. López, F. Grijalva, J. C. Rodríguez, and L. C. P. da Silva, “An energy management system for a residential microgrid using convex optimization,” in 2022 IEEE Sixth Ecuador Technical Chapters Meeting (ETCM), 2022, pp. 1–5.
  • [13] P. Fan, J. Yang, S. Ke, Y. Wen, X. Liu, L. Ding, and T. Ullah,“A multilayer voltage intelligent control strategy for distribution networks with v2g and power energy production-consumption units,” International Journal of Electrical Power Energy Systems, vol. 159, p. 110055, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S014206152400276X
  • [14] Z. Wang and S. Wang, “Grid power peak shaving and valley filling using vehicle-to-grid systems,” IEEE Transactions on Power Delivery, vol. 28, no. 3, pp. 1822–1829, July 2013.
  • [15] R. Asghar, M. H. Sulaiman, Z. Mustaffa, Z. Ali and Z. Ullah, "Integration of electric vehicles in smart grids: A review of the advantages and challenges of vehicle-to-grid technology," 2022 International Conference on IT and Industrial Technologies (ICIT), Chiniot, Pakistan, 2022, pp. 1-7, doi: 10.1109/ICIT56493.2022.9988947.
  • [16] A. Medeiros, L. Canha, V. Garcia, R. Motta, J. Moreira and R. Dos Santos, "Real time operation in electric vehicle smart charging stations: a matheuristic approach considering demand side management, energy storage and distributed generation," CIRED Porto Workshop 2022: E-mobility and power distribution systems, Hybrid Conference, Porto, Portugal, 2022, pp. 930-934, doi: 10.1049/icp.2022.0850.
  • [17] J. Guo, J. Yang, Z. Lin, C. Serrano and A. M. Cortes, "Impact Analysis of V2G Services on EV Battery Degradation -A Review," 2019 IEEE Milan PowerTech, Milan, Italy, 2019, pp. 1-6, doi: 10.1109/PTC.2019.8810982.
  • [18] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” Proceedings of the IEEE, vol. 101, no. 11, pp. 2409–2427, Nov 2013.
  • [19] S. Boyd and L. Vandenberghe, “Convex optimization, 25 cambridge university press,” Cambridge, England, 2004.
  • [20] N. Jenkins, J. Ekanayake, and G. Strbac, Distributed Generation, 01 2010.
  • [21] Nedic and A. Ozdaglar, "Distributed Subgradient Methods for Multi-Agent Optimization," in IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48-61, Jan. 2009, doi: 10.1109/TAC.2008.2009515.
  • [22] H. Zareipour, K. Bhattacharya, and C. Canizares, “Distributed generation: current status and challenges,” in Annual North American PowerSymposium (NAPS), 2004, pp. 1–8.
  • [23] R. H. Lasseter, “Microgrids and distributed generation,” Journal of Energy Engineering, vol. 133, no. 3, pp. 144–149, 2007.

Distributed Generation Approach with Helping of Charging Stations

Year 2024, Volume: 12 Issue: 4, 2262 - 2270, 23.10.2024
https://doi.org/10.29130/dubited.1445801

Abstract

This study addresses the optimization difficulties created by the combination of distributed generation (DG) and charging stations (CS), with the key difference that charging stations not only permit electric vehicle charging but also actively contribute to power supply. Using Convex Optimization (CVX) methods, the study formulates and solves optimization issues for coordinating and controlling DG units, taking into account charging stations' dual roles as power suppliers. The findings indicate that EVs can significantly contribute to grid stability, but challenges such as battery degradation and the need for advanced battery management systems (BMS) must be addressed to optimize these benefits. Simulation results show a potential improvement in grid stability the promise and the practical considerations of this innovative approach.

References

  • [1] N. Hill, S. Amaral, S. Morgan-Price, T. Nokes, J. Bates, H. Helms, H. Fehrenbach, K. Biemann, N. Abdalla, J. Jöhrens et al., “Determining the environmental impacts of conventional and alternatively fuelled vehicles through lca,” Final Report for the European Commission, DG Climate Action, 2020.
  • [2] W.-Y. Lin, M.-C. Hsiao, P.-C. Wu, J. S. Fu, L.-W. Lai, and H.-C. Lai, “Analysis of air quality and health co-benefits regarding electricvehicle promotion coupled with power plant emissions,” Journal of Cleaner Production, vol. 247, p. 119152, 2020. [Online]. Available:https://www.sciencedirect.com/science/article/pii/S0959652619340223
  • [3] M. Muratori, M. Alexander, D. Arent, M. Bazilian, P. Cazzola, E. M. Dede, J. Farrell, C. Gearhart, D. Greene, A. Jenn et al., “The rise of electric vehicles—2020 status and future expectations,” Progress in Energy, vol. 3, no. 2, p. 022002, 2021.
  • [4] E. Elibol and O. Dikmen, “Long-term performance investigation of different solar panels in the west black sea region,” Clean Technologies and Environmental Policy, vol. 26, 11 2023.
  • [5] M.-K. Tran, A. Bhatti, R. Vrolyk, D. Wong, S. Panchal, M. Fowler, and R. Fraser, “A review of range extenders in battery electric vehicles: Current progress and future perspectives,” World Electric Vehicle Journal, vol. 12, no. 2, 2021. [Online]. Available: https: //www.mdpi.com/2032-6653/12/2/54.
  • [6] M. Schiffer and G. Walther, “The electric location routing problem with time windows and partial recharging,” European journal of operational research, vol. 260, no. 3, pp. 995–1013, 2017.
  • [7] A. Tavakoli, S. Saha, M. T. Arif, M. E. Haque, N. Mendis, and A. M. Oo, “Impacts of grid integration of solar pv and electric vehicle on grid stability, power quality and energy economics: a review,” IET Energy Systems Integration, vol. 2, no. 3, pp. 243–260, 2020. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/ 10.1049/iet-esi.2019.0047
  • [8] S. Pelletier, O. Jabali, and G. Laporte, “50th anniversary invited article—goods distribution with electric vehicles: review and research perspectives,” Transportation science, vol. 50, no. 1, pp. 3–22, 2016.
  • [9] F. Ahmad, A. Iqbal, I. Ashraf, M. Marzband, and I. khan, “Optimal location of electric vehicle charging station and its impact on distribution network: A review,” Energy Reports, vol. 8, pp. 2314– 2333, 2022. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S2352484722001809
  • [10] R. Yu, W. Zhong, S. Xie, C. Yuen, S. Gjessing, and Y. Zhang, “Balancing power demand through ev mobility in vehicle-to-grid mobile energy networks,” IEEE Transactions on Industrial Informatics, vol. 12, no. 1, pp. 79–90, Feb 2016.
  • [11] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5673–5689,2013.
  • [12] D. E. C. Barragán, B. A. A. Acurio, J. C. López, F. Grijalva, J. C. Rodríguez, and L. C. P. da Silva, “An energy management system for a residential microgrid using convex optimization,” in 2022 IEEE Sixth Ecuador Technical Chapters Meeting (ETCM), 2022, pp. 1–5.
  • [13] P. Fan, J. Yang, S. Ke, Y. Wen, X. Liu, L. Ding, and T. Ullah,“A multilayer voltage intelligent control strategy for distribution networks with v2g and power energy production-consumption units,” International Journal of Electrical Power Energy Systems, vol. 159, p. 110055, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S014206152400276X
  • [14] Z. Wang and S. Wang, “Grid power peak shaving and valley filling using vehicle-to-grid systems,” IEEE Transactions on Power Delivery, vol. 28, no. 3, pp. 1822–1829, July 2013.
  • [15] R. Asghar, M. H. Sulaiman, Z. Mustaffa, Z. Ali and Z. Ullah, "Integration of electric vehicles in smart grids: A review of the advantages and challenges of vehicle-to-grid technology," 2022 International Conference on IT and Industrial Technologies (ICIT), Chiniot, Pakistan, 2022, pp. 1-7, doi: 10.1109/ICIT56493.2022.9988947.
  • [16] A. Medeiros, L. Canha, V. Garcia, R. Motta, J. Moreira and R. Dos Santos, "Real time operation in electric vehicle smart charging stations: a matheuristic approach considering demand side management, energy storage and distributed generation," CIRED Porto Workshop 2022: E-mobility and power distribution systems, Hybrid Conference, Porto, Portugal, 2022, pp. 930-934, doi: 10.1049/icp.2022.0850.
  • [17] J. Guo, J. Yang, Z. Lin, C. Serrano and A. M. Cortes, "Impact Analysis of V2G Services on EV Battery Degradation -A Review," 2019 IEEE Milan PowerTech, Milan, Italy, 2019, pp. 1-6, doi: 10.1109/PTC.2019.8810982.
  • [18] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” Proceedings of the IEEE, vol. 101, no. 11, pp. 2409–2427, Nov 2013.
  • [19] S. Boyd and L. Vandenberghe, “Convex optimization, 25 cambridge university press,” Cambridge, England, 2004.
  • [20] N. Jenkins, J. Ekanayake, and G. Strbac, Distributed Generation, 01 2010.
  • [21] Nedic and A. Ozdaglar, "Distributed Subgradient Methods for Multi-Agent Optimization," in IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48-61, Jan. 2009, doi: 10.1109/TAC.2008.2009515.
  • [22] H. Zareipour, K. Bhattacharya, and C. Canizares, “Distributed generation: current status and challenges,” in Annual North American PowerSymposium (NAPS), 2004, pp. 1–8.
  • [23] R. H. Lasseter, “Microgrids and distributed generation,” Journal of Energy Engineering, vol. 133, no. 3, pp. 144–149, 2007.
There are 23 citations in total.

Details

Primary Language English
Subjects Electrical Energy Transmission, Networks and Systems, Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics)
Journal Section Articles
Authors

Ali İhsan Aygün 0000-0001-6256-4096

Publication Date October 23, 2024
Submission Date March 1, 2024
Acceptance Date July 29, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Aygün, A. İ. (2024). Distributed Generation Approach with Helping of Charging Stations. Duzce University Journal of Science and Technology, 12(4), 2262-2270. https://doi.org/10.29130/dubited.1445801
AMA Aygün Aİ. Distributed Generation Approach with Helping of Charging Stations. DUBİTED. October 2024;12(4):2262-2270. doi:10.29130/dubited.1445801
Chicago Aygün, Ali İhsan. “Distributed Generation Approach With Helping of Charging Stations”. Duzce University Journal of Science and Technology 12, no. 4 (October 2024): 2262-70. https://doi.org/10.29130/dubited.1445801.
EndNote Aygün Aİ (October 1, 2024) Distributed Generation Approach with Helping of Charging Stations. Duzce University Journal of Science and Technology 12 4 2262–2270.
IEEE A. İ. Aygün, “Distributed Generation Approach with Helping of Charging Stations”, DUBİTED, vol. 12, no. 4, pp. 2262–2270, 2024, doi: 10.29130/dubited.1445801.
ISNAD Aygün, Ali İhsan. “Distributed Generation Approach With Helping of Charging Stations”. Duzce University Journal of Science and Technology 12/4 (October 2024), 2262-2270. https://doi.org/10.29130/dubited.1445801.
JAMA Aygün Aİ. Distributed Generation Approach with Helping of Charging Stations. DUBİTED. 2024;12:2262–2270.
MLA Aygün, Ali İhsan. “Distributed Generation Approach With Helping of Charging Stations”. Duzce University Journal of Science and Technology, vol. 12, no. 4, 2024, pp. 2262-70, doi:10.29130/dubited.1445801.
Vancouver Aygün Aİ. Distributed Generation Approach with Helping of Charging Stations. DUBİTED. 2024;12(4):2262-70.