Research Article
BibTex RIS Cite

Bacterial Allies in Agricultural Defense: Evaluating Xenorhabdus and Photorhabdus Supernatants Against Phytophthora infestans and Monilinia laxa

Year 2024, Volume: 12 Issue: 4, 2131 - 2138, 23.10.2024
https://doi.org/10.29130/dubited.1463746

Abstract

Fungal plant pathogens represent a significant threat to global agriculture, affecting crop productivity and food security. Phytophthora infestans and Monilinia laxa are two such pathogens causing blights and brown rot, respectively, in economically vital crops like potato and stone fruits. Developing sustainable management strategies is crucial to mitigate these threats. Xenorhabdus and Photorhabdus bacteria produce various secondary metabolites with different biological activities. This study investigates the antifungal activity of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against P. infestans and M. laxa. Results demonstrate varying degrees of antifungal efficacy among bacterial species, with X. cabanillasii and X. szentirmaii exhibiting significant suppression of fungal growth. The findings underscore the importance of exploring biocontrol agents in integrated pest management practices.

References

  • [1] S. Akino, D. Takemoto, and K. Hosaka, Phytophthora infestans: a review of past and current studies on potato late blight, J. Gen. Plant. Pathol., vol. 80, no. 1, pp. 24–37, Jan. 2014, doi: 10.1007/s10327-013-0495-x.
  • [2] N. J. Grünwald and W. G. Flier, “The Biology of Phytophthora infestans at its center of origin”, Annu. Rev. Phytopathol., vol. 43, no. 1, pp. 171–190, 2005, doi: 10.1146/annurev.phyto.43.040204.135906.
  • [3] I. Larena et al., “Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum”, Biol. Control, vol. 32, no. 2, pp. 305–310, Feb. 2005, doi: 10.1016/j.biocontrol.2004.10.010.
  • [4] M. Touray, H. Cimen, E. Bode, H. B. Bode, and S. Hazir, “Effects of Xenorhabdus and Photorhabdus bacterial metabolites on the ovipositional activity of Aedes albopictus”, J. Pest Sci., Mar. 2024, doi: 10.1007/s10340-024-01760-7.
  • [5] H. B. Bode, “Entomopathogenic bacteria as a source of secondary metabolites”, Curr. Opin. Chem. Biol., vol. 13, no. 2, pp. 224–230, Apr. 2009, doi: 10.1016/j.cbpa.2009.02.037.
  • [6] D. I. Shapiro-Ilan, C. C. Reilly, and M. W. Hotchkiss, “Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan”, Arch. Phytopathol. Pflanzenschutz, 42(8), pp. 715–728, 2009, doi: 10.1080/03235400701390539.bvg
  • [7] C. H. Bock, D. I. Shapiro-Ilan, D. E. Wedge, and C. L. Cantrell, “Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab”, J. Pest Sci., vol. 87, no. 1, pp. 155–162, Mar. 2014, doi: 10.1007/s10340-013-0519-5.
  • [8] I. Ullah et al., “Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021”, J. Microbiol., vol. 53, no. 2, pp. 127–133, Feb. 2015, doi: 10.1007/s12275-015-4632-4.
  • [9] S. Hazir, D. I. Shapiro-Ilan, C. H. Bock, C. Hazir, L. G. Leite, and M. W. Hotchkiss, “Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens”, Eur. J. Plant Pathol., vol. 146, no. 2, pp. 369–381, Oct. 2016, doi: 10.1007/s10658-016-0923-9.
  • [10] D. Shi, R. An, W. Zhang, G. Zhang, and Z. Yu, “Stilbene derivatives from Photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi”, J. Agric. Food Chem., vol. 65, no. 1, pp. 60–65, Jan. 2017, doi: 10.1021/acs.jafc.6b04303.
  • [11] H. Cimen et al., “Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii”, Appl. Microbiol. Biotechnol., vol. 105, no. 13, pp. 5517–5528, Jul. 2021, doi: 10.1007/s00253-021-11435-3.
  • [12] A. O. Brachmann and H. B. Bode, “Identification and bioanalysis of natural products from insect symbionts and pathogens”, Adv. Biochem. Eng. Biotechnol., vol. 135, pp. 123–155, 2013, doi: 10.1007/10_2013_192.
  • [13] S. P. Stock, A. Kusakabe, and R. A. Orozco, “Secondary metabolites produced by Heterorhabditis symbionts and their application in agriculture: what we know and what to do next”, J. Nematol., vol. 49, no. 4, pp. 373–383, Dec. 2017.
  • [14] S. H. Gulsen et al., “Antiprotozoal activity of different Xenorhabdus and Photorhabdus bacterial secondary metabolites and identification of bioactive compounds using the easyPACId approach”, Sci. Rep., vol. 12, no. 1, Art. no. 1, Jun. 2022, doi: 10.1038/s41598-022-13722-z.
  • [15] Md. M. I. Mollah and Y. Kim, “Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A2 to suppress host insect immunity”, BMC Microbiol., vol. 20, no. 1, p. 359, Nov. 2020, doi: 10.1186/s12866-020-02042-9.
  • [16] J. Dreyer, A. P. Malan, and L. M. T. Dicks, “Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds”, Front. Microbiol., vol. 9, p. 3177, Dec. 2018, doi: 10.3389/fmicb.2018.03177.
  • [17] K. K. Ng and J. M. Webster, “Antimycotic activity of Xenorhabdus bovienii (Enterobacteriaceae) metabolites against Phytophthora infestans on potato plants”, Can. J. Plant Pathol., vol. 19, no. 2, pp. 125–132, Jun. 1997, doi: 10.1080/07060669709500540.
  • [18] J. G. Chacón-Orozco, C. J. Bueno, D. I. Shapiro-Ilan, S. Hazir, L. G. Leite, and R. Harakava, “Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum”, Sci. Rep., vol. 10, no. 1, p. 20649, Nov. 2020, doi: 10.1038/s41598-020-77472-6.
  • [19] P.-W. Tu et al., “Evaluation of the Antifungal Activities of Photorhabdus akhurstii and Its secondary metabolites against phytopathogenic Colletotrichum gloeosporioides”, J. Fungi (Basel), vol. 8, no. 4, p. 403, Apr. 2022, doi: 10.3390/jof8040403.

Xenorhabdus ve Photorhabdus bakterilerine ait süpernatantların Phytophthora infestans ve Monilinia laxa türlerine karşı etkinliklerinin belirlenmesi

Year 2024, Volume: 12 Issue: 4, 2131 - 2138, 23.10.2024
https://doi.org/10.29130/dubited.1463746

Abstract

Fungal fitopatojenler, tarım verimliliğini ve gıda güvenliğini etkileyerek tarımsal üretimde ciddi bir tehdit oluşturur. Phytophthora infestans ve Monilinia laxa gibi patojenler, ekonomik olarak önemli tarım ürünlerinde sırasıyla solgunluk ve kahverengi çürüklere neden olan önemli fitopatojenlerdir. Bu fitopatojenlerin etkilerini hafifletmek için sürdürülebilir yönetim stratejileri geliştirmek hayati önem taşımaktadır. Xenorhabdus ve Photorhabdus cinslerine ait bakterilerin pek çok farklı biyolojik aktiviteye sahip sekonder metabolitler ürettiği bilinmektedir. Bu çalışma, Xenorhabdus ve Photorhabdus bakterilerinden elde edilen süpernatantların P. infestans ve M. laxa'ya karşı antifungal aktivitesini belirlemek amacıyla yapılmıştır. Sonuçlar, bakteri türlerinin değişen derecelerde antifungal etkinlik gösterdiğini ve X. cabanillasii ve X. szentirmaii'nin fungal büyümeyi önemli ölçüde bastırdığını göstermektedir.

References

  • [1] S. Akino, D. Takemoto, and K. Hosaka, Phytophthora infestans: a review of past and current studies on potato late blight, J. Gen. Plant. Pathol., vol. 80, no. 1, pp. 24–37, Jan. 2014, doi: 10.1007/s10327-013-0495-x.
  • [2] N. J. Grünwald and W. G. Flier, “The Biology of Phytophthora infestans at its center of origin”, Annu. Rev. Phytopathol., vol. 43, no. 1, pp. 171–190, 2005, doi: 10.1146/annurev.phyto.43.040204.135906.
  • [3] I. Larena et al., “Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum”, Biol. Control, vol. 32, no. 2, pp. 305–310, Feb. 2005, doi: 10.1016/j.biocontrol.2004.10.010.
  • [4] M. Touray, H. Cimen, E. Bode, H. B. Bode, and S. Hazir, “Effects of Xenorhabdus and Photorhabdus bacterial metabolites on the ovipositional activity of Aedes albopictus”, J. Pest Sci., Mar. 2024, doi: 10.1007/s10340-024-01760-7.
  • [5] H. B. Bode, “Entomopathogenic bacteria as a source of secondary metabolites”, Curr. Opin. Chem. Biol., vol. 13, no. 2, pp. 224–230, Apr. 2009, doi: 10.1016/j.cbpa.2009.02.037.
  • [6] D. I. Shapiro-Ilan, C. C. Reilly, and M. W. Hotchkiss, “Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan”, Arch. Phytopathol. Pflanzenschutz, 42(8), pp. 715–728, 2009, doi: 10.1080/03235400701390539.bvg
  • [7] C. H. Bock, D. I. Shapiro-Ilan, D. E. Wedge, and C. L. Cantrell, “Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab”, J. Pest Sci., vol. 87, no. 1, pp. 155–162, Mar. 2014, doi: 10.1007/s10340-013-0519-5.
  • [8] I. Ullah et al., “Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021”, J. Microbiol., vol. 53, no. 2, pp. 127–133, Feb. 2015, doi: 10.1007/s12275-015-4632-4.
  • [9] S. Hazir, D. I. Shapiro-Ilan, C. H. Bock, C. Hazir, L. G. Leite, and M. W. Hotchkiss, “Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens”, Eur. J. Plant Pathol., vol. 146, no. 2, pp. 369–381, Oct. 2016, doi: 10.1007/s10658-016-0923-9.
  • [10] D. Shi, R. An, W. Zhang, G. Zhang, and Z. Yu, “Stilbene derivatives from Photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi”, J. Agric. Food Chem., vol. 65, no. 1, pp. 60–65, Jan. 2017, doi: 10.1021/acs.jafc.6b04303.
  • [11] H. Cimen et al., “Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii”, Appl. Microbiol. Biotechnol., vol. 105, no. 13, pp. 5517–5528, Jul. 2021, doi: 10.1007/s00253-021-11435-3.
  • [12] A. O. Brachmann and H. B. Bode, “Identification and bioanalysis of natural products from insect symbionts and pathogens”, Adv. Biochem. Eng. Biotechnol., vol. 135, pp. 123–155, 2013, doi: 10.1007/10_2013_192.
  • [13] S. P. Stock, A. Kusakabe, and R. A. Orozco, “Secondary metabolites produced by Heterorhabditis symbionts and their application in agriculture: what we know and what to do next”, J. Nematol., vol. 49, no. 4, pp. 373–383, Dec. 2017.
  • [14] S. H. Gulsen et al., “Antiprotozoal activity of different Xenorhabdus and Photorhabdus bacterial secondary metabolites and identification of bioactive compounds using the easyPACId approach”, Sci. Rep., vol. 12, no. 1, Art. no. 1, Jun. 2022, doi: 10.1038/s41598-022-13722-z.
  • [15] Md. M. I. Mollah and Y. Kim, “Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A2 to suppress host insect immunity”, BMC Microbiol., vol. 20, no. 1, p. 359, Nov. 2020, doi: 10.1186/s12866-020-02042-9.
  • [16] J. Dreyer, A. P. Malan, and L. M. T. Dicks, “Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds”, Front. Microbiol., vol. 9, p. 3177, Dec. 2018, doi: 10.3389/fmicb.2018.03177.
  • [17] K. K. Ng and J. M. Webster, “Antimycotic activity of Xenorhabdus bovienii (Enterobacteriaceae) metabolites against Phytophthora infestans on potato plants”, Can. J. Plant Pathol., vol. 19, no. 2, pp. 125–132, Jun. 1997, doi: 10.1080/07060669709500540.
  • [18] J. G. Chacón-Orozco, C. J. Bueno, D. I. Shapiro-Ilan, S. Hazir, L. G. Leite, and R. Harakava, “Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum”, Sci. Rep., vol. 10, no. 1, p. 20649, Nov. 2020, doi: 10.1038/s41598-020-77472-6.
  • [19] P.-W. Tu et al., “Evaluation of the Antifungal Activities of Photorhabdus akhurstii and Its secondary metabolites against phytopathogenic Colletotrichum gloeosporioides”, J. Fungi (Basel), vol. 8, no. 4, p. 403, Apr. 2022, doi: 10.3390/jof8040403.
There are 19 citations in total.

Details

Primary Language English
Subjects Biosystem
Journal Section Articles
Authors

Derya Uluğ 0000-0002-2167-8473

Publication Date October 23, 2024
Submission Date April 3, 2024
Acceptance Date July 9, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Uluğ, D. (2024). Bacterial Allies in Agricultural Defense: Evaluating Xenorhabdus and Photorhabdus Supernatants Against Phytophthora infestans and Monilinia laxa. Duzce University Journal of Science and Technology, 12(4), 2131-2138. https://doi.org/10.29130/dubited.1463746
AMA Uluğ D. Bacterial Allies in Agricultural Defense: Evaluating Xenorhabdus and Photorhabdus Supernatants Against Phytophthora infestans and Monilinia laxa. DUBİTED. October 2024;12(4):2131-2138. doi:10.29130/dubited.1463746
Chicago Uluğ, Derya. “Bacterial Allies in Agricultural Defense: Evaluating Xenorhabdus and Photorhabdus Supernatants Against Phytophthora Infestans and Monilinia Laxa”. Duzce University Journal of Science and Technology 12, no. 4 (October 2024): 2131-38. https://doi.org/10.29130/dubited.1463746.
EndNote Uluğ D (October 1, 2024) Bacterial Allies in Agricultural Defense: Evaluating Xenorhabdus and Photorhabdus Supernatants Against Phytophthora infestans and Monilinia laxa. Duzce University Journal of Science and Technology 12 4 2131–2138.
IEEE D. Uluğ, “Bacterial Allies in Agricultural Defense: Evaluating Xenorhabdus and Photorhabdus Supernatants Against Phytophthora infestans and Monilinia laxa”, DUBİTED, vol. 12, no. 4, pp. 2131–2138, 2024, doi: 10.29130/dubited.1463746.
ISNAD Uluğ, Derya. “Bacterial Allies in Agricultural Defense: Evaluating Xenorhabdus and Photorhabdus Supernatants Against Phytophthora Infestans and Monilinia Laxa”. Duzce University Journal of Science and Technology 12/4 (October 2024), 2131-2138. https://doi.org/10.29130/dubited.1463746.
JAMA Uluğ D. Bacterial Allies in Agricultural Defense: Evaluating Xenorhabdus and Photorhabdus Supernatants Against Phytophthora infestans and Monilinia laxa. DUBİTED. 2024;12:2131–2138.
MLA Uluğ, Derya. “Bacterial Allies in Agricultural Defense: Evaluating Xenorhabdus and Photorhabdus Supernatants Against Phytophthora Infestans and Monilinia Laxa”. Duzce University Journal of Science and Technology, vol. 12, no. 4, 2024, pp. 2131-8, doi:10.29130/dubited.1463746.
Vancouver Uluğ D. Bacterial Allies in Agricultural Defense: Evaluating Xenorhabdus and Photorhabdus Supernatants Against Phytophthora infestans and Monilinia laxa. DUBİTED. 2024;12(4):2131-8.