Research Article
BibTex RIS Cite

Farklı Akışkanlar Kullanılarak Elektrosprey ile Soğutulan Fotovoltaik Panelin Termal Analizi

Year 2024, Volume: 12 Issue: 4, 2271 - 2282, 23.10.2024
https://doi.org/10.29130/dubited.1492678

Abstract

Bu çalışmada, fotovoltaik (PV) panelin elektrosprey soğutma yöntemi ile soğutma performansı incelenmiştir. Deneyler, 1000 W/m² ışınım, 25 G nozul çapı ve 70 mm nozul-PV panel arası mesafesi ve 20 kV gerilim altında gerçekleştirilmiştir. Su, etanol ve su - etanol (%50-%50) karışımı, 50-80-110 ml/h debilerde atomize edilerek panel yüzeyine püskürtülmüştür. Sonuçlar, PV panel yüzey sıcaklığının artmasıyla elektrik güç çıkışının azaldığını göstermiştir. Etanol ve su - etanol karışımı, özellikle 80 ve 110 ml/h debilerde, suya göre daha etkili bir soğutma performansı sergilemiştir. En yüksek debide etanol, panel sıcaklığını %59 düşürerek soğutulmamış duruma göre %6,8 daha fazla elektrik güç çıkışı sağlamıştır. Bu bulgular, elektrosprey soğutma yönteminin PV panellerin elektriksel verimini artırmada etkili olduğunu ve etanol, su - etanol karışımı ile suya göre daha iyi soğutma performansı elde edildiğini göstermektedir.

Supporting Institution

TÜBİTAK

Project Number

123M769

References

  • [1] M. Javidan and A. J. Moghadam, “Experimental investigation on thermal management of a photovoltaic module using water-jet impingement cooling,” Energy Convers. Manag., vol. 228, pp. 113686, 2021.
  • [2] N. Ahmad, A. Khandakar, A. El-Tayeb, K. Benhmed, A. Iqbal, and F. Touati, “Novel design for thermal management of PV cells in harsh environmental conditions,” Energies, vol. 11, no. 11, pp. 3231, 2018.
  • [3] M. Talaat, A. S. Alsayyari, A. Alblawi, and A. Y. Hatata, “Hybrid-cloud-based data processing for power system monitoring in smart grids,” Sustain. Cities Soc., vol. 55, pp. 102049, 2020.
  • [4] E. M. Abo-Zahhad, S. Ookawara, A. Radwan, A. H. El-Shazly, and M. F. ElKady, “Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling,” Energy Convers. Manag., vol. 176, pp. 39–54, 2018.
  • [5] A. H. A. Al-Waeli, K. Sophian, M.T. Chaichan, H.A. Kazem, A. Ibrahim, S. Mat, and M.H. R., “Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study,” Energy Convers. Manag., vol. 151, pp. 693–708, 2017.
  • [6] Z. Rostami, M. Rahimi, and N. Azimi, “Using high-frequency ultrasound waves and nanofluid for increasing the efficiency and cooling performance of a PV module,” Energy Convers. Manag., vol. 160, pp. 141–149, 2018.
  • [7] M. S. Y. Ebaid, A. M. Ghrair, and M. Al-Busoul, “Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture,” Energy Convers. Manag., vol. 155, pp. 324–343, 2018.
  • [8] A. Sohani, M.H. Shahverdian, H. Sayyaadi, S. Samiezadeh, M.H. Doranehgard, S. Nizetic and N. Karimi, “Selecting the best nanofluid type for A photovoltaic thermal (PV/T) system based on reliability, efficiency, energy, economic, and environmental criteria,” J. Taiwan Inst. Chem. Eng., vol. 124, pp. 351–358, 2021.
  • [9] B. Shi, W. Wu, and L. Yan, “Size optimization of stand-alone PV/wind/diesel hybrid power generation systems,” J. Taiwan Inst. Chem. Eng., vol. 73, pp. 93–101, 2017.
  • [10] R. Li, Y. Shi, M. Wu, S. Hong, and P. Wang, “Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle,” Nat. Sustain., vol. 3, no. 8, pp. 636–643, 2020.
  • [11] S. S. Bhakre, P. D. Sawarkar, and V. R. Kalamkar, “Performance evaluation of PV panel surfaces exposed to hydraulic cooling – A review,” Sol. Energy, vol. 224, pp. 1193–1209, 2021.
  • [12] A. Anand, A. Shukla, H. Panchal, and A. Sharma, “Thermal regulation of photovoltaic system for enhanced power production: A review,” J. Energy Storage, vol. 35, pp. 102236, 2021.
  • [13] Y. S. Indartono, A. M. Nur, A. Divanto, and A. Adiyani, “Design and Testing of Thermosiphon Passive Cooling System to Increase Efficiency of Floating Photovoltaic Array,” Evergreen, vol. 10, no. 1, pp. 480–488, 2023.
  • [14] M. Kalsia, A. Sharma, R. Kaushik, and R. S. Dondapati, “Evaporative Cooling Technologies: Conceptual Review Study,” Evergreen, vol. 10, no. 1, pp. 421–429, 2023.
  • [15] P. Bevilacqua, R. Bruno, A. Rollo, and V. Ferraro, “A novel thermal model for PV panels with back surface spray cooling,” Energy, vol. 255, pp. 124401, 2022.
  • [16] S. M. Shalaby, M. K. Elfakharany, B. M. Moharram, and H. F. Abosheiasha, “Experimental study on the performance of PV with water cooling,” Energy Reports, vol. 8, pp. 957–961, 2022.
  • [17] S. Nižetić, D. Čoko, A. Yadav, and F. Grubišić-Čabo, “Water spray cooling technique applied on a photovoltaic panel: The performance response,” Energy Convers. Manag., vol. 108, pp. 287–296, 2016.
  • [18] E. B. Agyekum, S. PraveenKumar, N. T. Alwan, V. I. Velkin, and S. E. Shcheklein, “Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation,” Heliyon, vol. 7, no. 9, pp. e07920, 2021.
  • [19] M. Abdolzadeh and M. Ameri, “Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells,” Renew. Energy, vol. 34, no. 1, pp. 91–96, 2009.
  • [20] M. Raju, R. N. Sarma, A. Suryan, P. P. Nair, and S. Nižetić, “Investigation of optimal water utilization for water spray cooled photovoltaic panel: A three-dimensional computational study,” Sustain. Energy Technol. Assessments, vol. 51, pp. 101975, 2022.
  • [21] H. Liu, C. Cai, H. Yin, J. Luo, M. Jia, and J. Gao, “Experimental investigation on heat transfer of spray cooling with the mixture of ethanol and water,” Int. J. Therm. Sci., vol. 133, pp. 62–68, 2018.
  • [22] P. N. Karpov, A. D. Nazarov, A. F. Serov, and V. I. Terekhov, “Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture,” Tech. Phys. Lett., vol. 41, no. 7, pp. 668–671, 2015.
  • [23] H. Yin, H. Chen, C. Cai, H. Liu, and C. Zhao, “Spray cooling heat transfer enhancement by ethanol additive: Effect of Sauter mean diameter and fluid volumetric flux,” Heat Mass Transf. und Stoffuebertragung, vol. 59, no. 8, pp. 1459–1475, 2023.
  • [24] H. Liu, C. Cai, M. Jia, J. Gao, H. Yin, and H. Chen, “Experimental investigation on spray cooling with low-alcohol additives,” Appl. Therm. Eng., vol. 146, pp. 921–930, 2019.
  • [25] H. Wan, P. J. Liu, F. Qin, X. G. Wei, and W. Q. Li, “Electrospray cooling characteristics in cone-jet and multi-jet modes,” Int. J. Therm. Sci., vol. 188, pp. 108240, 2023.
  • [26] A. Kabakuş, K. Yakut, and A. N. Özkın, “Comparison of electrospray and mechanical spray atomization cooling performances on heat sinks,” J. Polytech., vol. 26, no. 2, pp. 765–773, 2023.
  • [27] R. Yakut, K. Yakut, E. Sabolsky, and J. Kuhlman, “Determination of heat transfer and spray performances of isopropyl alcohol electrospray,” Sensors Actuators A Phys., vol. 332, pp. 113135, 2021.
  • [28] R. Yakut, “Response surface methodology-based multi-nozzle optimization for electrospray cooling,” Appl. Therm. Eng., vol. 236, pp. 121914, 2024.
  • [29] A. Kabakuş, K. Yakut, A. N. Özakın, and R. Yakut, “Experimental determination of cooling performance on heat sinks with cone-jet electrospray mode,” Eng. Sci. Technol. an Int. J., vol. 24, no. 3, pp. 665–670, 2021.
  • [30] R. Yakut, K. Yakut, E. Sabolsky, and J. Kuhlman, “Experimental determination of cooling and spray characteristics of the water electrospray,” Int. Commun. Heat Mass Transf., vol. 120, pp. 105046, 2021.
  • [31] A. Kabakuş, “Isı Alıcılarda Elektrosprey Soğutma Analizi” (Doktora Tezi), Fen Bilim. Enstitüsü, Atatürk Üniversitesi, Erzurum TÜRKİYE, 2021.
  • [32] F. Sonmez, S. Karagoz, O. Yildirim, and I. Firat, “Experimental and numerical investigation of the stenosed coronary artery taken from the clinical setting and modeled in terms of hemodynamics,” Int. j. numer. method. biomed. eng., pp. 1–15, 2023.
  • [33] J. P. Holman, Experimental Methods for Engineers, 8th ed. New York, USA: McGraw-Hill, 2012.

Thermal Analysis of Photovoltaic Panel Cooled by Electrospray Using Different Fluids

Year 2024, Volume: 12 Issue: 4, 2271 - 2282, 23.10.2024
https://doi.org/10.29130/dubited.1492678

Abstract

In this study, the cooling performance of the photovoltaic (PV) panel was examined by the electrospray cooling method. The experiments were carried out under 1000 W/m² irradiation, 25 G nozzle diameter and 70 mm nozzle-to-PV panel distance and 20 kV voltage. Water, ethanol and water - ethanol (50%- 50%) mixture were atomized and sprayed on the panel surface at flow rates of 50-80-110 ml/h. The results showed that electrical power output decreased with increasing PV panel surface temperature. Ethanol and water - ethanol mixture showed a more effective cooling performance than water, especially at flow rates of 80 and 110 ml/h. At the highest flow rate, ethanol reduced the panel temperature by 59%, providing 6,8% more electrical power output than the uncooled condition. These findings show that the electrospray cooling method is effective in increasing the electrical efficiency of PV panels and that better cooling performance is achieved with ethanol, water - ethanol mixture compared to water.

Project Number

123M769

References

  • [1] M. Javidan and A. J. Moghadam, “Experimental investigation on thermal management of a photovoltaic module using water-jet impingement cooling,” Energy Convers. Manag., vol. 228, pp. 113686, 2021.
  • [2] N. Ahmad, A. Khandakar, A. El-Tayeb, K. Benhmed, A. Iqbal, and F. Touati, “Novel design for thermal management of PV cells in harsh environmental conditions,” Energies, vol. 11, no. 11, pp. 3231, 2018.
  • [3] M. Talaat, A. S. Alsayyari, A. Alblawi, and A. Y. Hatata, “Hybrid-cloud-based data processing for power system monitoring in smart grids,” Sustain. Cities Soc., vol. 55, pp. 102049, 2020.
  • [4] E. M. Abo-Zahhad, S. Ookawara, A. Radwan, A. H. El-Shazly, and M. F. ElKady, “Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling,” Energy Convers. Manag., vol. 176, pp. 39–54, 2018.
  • [5] A. H. A. Al-Waeli, K. Sophian, M.T. Chaichan, H.A. Kazem, A. Ibrahim, S. Mat, and M.H. R., “Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study,” Energy Convers. Manag., vol. 151, pp. 693–708, 2017.
  • [6] Z. Rostami, M. Rahimi, and N. Azimi, “Using high-frequency ultrasound waves and nanofluid for increasing the efficiency and cooling performance of a PV module,” Energy Convers. Manag., vol. 160, pp. 141–149, 2018.
  • [7] M. S. Y. Ebaid, A. M. Ghrair, and M. Al-Busoul, “Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture,” Energy Convers. Manag., vol. 155, pp. 324–343, 2018.
  • [8] A. Sohani, M.H. Shahverdian, H. Sayyaadi, S. Samiezadeh, M.H. Doranehgard, S. Nizetic and N. Karimi, “Selecting the best nanofluid type for A photovoltaic thermal (PV/T) system based on reliability, efficiency, energy, economic, and environmental criteria,” J. Taiwan Inst. Chem. Eng., vol. 124, pp. 351–358, 2021.
  • [9] B. Shi, W. Wu, and L. Yan, “Size optimization of stand-alone PV/wind/diesel hybrid power generation systems,” J. Taiwan Inst. Chem. Eng., vol. 73, pp. 93–101, 2017.
  • [10] R. Li, Y. Shi, M. Wu, S. Hong, and P. Wang, “Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle,” Nat. Sustain., vol. 3, no. 8, pp. 636–643, 2020.
  • [11] S. S. Bhakre, P. D. Sawarkar, and V. R. Kalamkar, “Performance evaluation of PV panel surfaces exposed to hydraulic cooling – A review,” Sol. Energy, vol. 224, pp. 1193–1209, 2021.
  • [12] A. Anand, A. Shukla, H. Panchal, and A. Sharma, “Thermal regulation of photovoltaic system for enhanced power production: A review,” J. Energy Storage, vol. 35, pp. 102236, 2021.
  • [13] Y. S. Indartono, A. M. Nur, A. Divanto, and A. Adiyani, “Design and Testing of Thermosiphon Passive Cooling System to Increase Efficiency of Floating Photovoltaic Array,” Evergreen, vol. 10, no. 1, pp. 480–488, 2023.
  • [14] M. Kalsia, A. Sharma, R. Kaushik, and R. S. Dondapati, “Evaporative Cooling Technologies: Conceptual Review Study,” Evergreen, vol. 10, no. 1, pp. 421–429, 2023.
  • [15] P. Bevilacqua, R. Bruno, A. Rollo, and V. Ferraro, “A novel thermal model for PV panels with back surface spray cooling,” Energy, vol. 255, pp. 124401, 2022.
  • [16] S. M. Shalaby, M. K. Elfakharany, B. M. Moharram, and H. F. Abosheiasha, “Experimental study on the performance of PV with water cooling,” Energy Reports, vol. 8, pp. 957–961, 2022.
  • [17] S. Nižetić, D. Čoko, A. Yadav, and F. Grubišić-Čabo, “Water spray cooling technique applied on a photovoltaic panel: The performance response,” Energy Convers. Manag., vol. 108, pp. 287–296, 2016.
  • [18] E. B. Agyekum, S. PraveenKumar, N. T. Alwan, V. I. Velkin, and S. E. Shcheklein, “Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation,” Heliyon, vol. 7, no. 9, pp. e07920, 2021.
  • [19] M. Abdolzadeh and M. Ameri, “Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells,” Renew. Energy, vol. 34, no. 1, pp. 91–96, 2009.
  • [20] M. Raju, R. N. Sarma, A. Suryan, P. P. Nair, and S. Nižetić, “Investigation of optimal water utilization for water spray cooled photovoltaic panel: A three-dimensional computational study,” Sustain. Energy Technol. Assessments, vol. 51, pp. 101975, 2022.
  • [21] H. Liu, C. Cai, H. Yin, J. Luo, M. Jia, and J. Gao, “Experimental investigation on heat transfer of spray cooling with the mixture of ethanol and water,” Int. J. Therm. Sci., vol. 133, pp. 62–68, 2018.
  • [22] P. N. Karpov, A. D. Nazarov, A. F. Serov, and V. I. Terekhov, “Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture,” Tech. Phys. Lett., vol. 41, no. 7, pp. 668–671, 2015.
  • [23] H. Yin, H. Chen, C. Cai, H. Liu, and C. Zhao, “Spray cooling heat transfer enhancement by ethanol additive: Effect of Sauter mean diameter and fluid volumetric flux,” Heat Mass Transf. und Stoffuebertragung, vol. 59, no. 8, pp. 1459–1475, 2023.
  • [24] H. Liu, C. Cai, M. Jia, J. Gao, H. Yin, and H. Chen, “Experimental investigation on spray cooling with low-alcohol additives,” Appl. Therm. Eng., vol. 146, pp. 921–930, 2019.
  • [25] H. Wan, P. J. Liu, F. Qin, X. G. Wei, and W. Q. Li, “Electrospray cooling characteristics in cone-jet and multi-jet modes,” Int. J. Therm. Sci., vol. 188, pp. 108240, 2023.
  • [26] A. Kabakuş, K. Yakut, and A. N. Özkın, “Comparison of electrospray and mechanical spray atomization cooling performances on heat sinks,” J. Polytech., vol. 26, no. 2, pp. 765–773, 2023.
  • [27] R. Yakut, K. Yakut, E. Sabolsky, and J. Kuhlman, “Determination of heat transfer and spray performances of isopropyl alcohol electrospray,” Sensors Actuators A Phys., vol. 332, pp. 113135, 2021.
  • [28] R. Yakut, “Response surface methodology-based multi-nozzle optimization for electrospray cooling,” Appl. Therm. Eng., vol. 236, pp. 121914, 2024.
  • [29] A. Kabakuş, K. Yakut, A. N. Özakın, and R. Yakut, “Experimental determination of cooling performance on heat sinks with cone-jet electrospray mode,” Eng. Sci. Technol. an Int. J., vol. 24, no. 3, pp. 665–670, 2021.
  • [30] R. Yakut, K. Yakut, E. Sabolsky, and J. Kuhlman, “Experimental determination of cooling and spray characteristics of the water electrospray,” Int. Commun. Heat Mass Transf., vol. 120, pp. 105046, 2021.
  • [31] A. Kabakuş, “Isı Alıcılarda Elektrosprey Soğutma Analizi” (Doktora Tezi), Fen Bilim. Enstitüsü, Atatürk Üniversitesi, Erzurum TÜRKİYE, 2021.
  • [32] F. Sonmez, S. Karagoz, O. Yildirim, and I. Firat, “Experimental and numerical investigation of the stenosed coronary artery taken from the clinical setting and modeled in terms of hemodynamics,” Int. j. numer. method. biomed. eng., pp. 1–15, 2023.
  • [33] J. P. Holman, Experimental Methods for Engineers, 8th ed. New York, USA: McGraw-Hill, 2012.
There are 33 citations in total.

Details

Primary Language English
Subjects Solar Energy Systems, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Articles
Authors

Abdüssamed Kabakuş 0000-0002-3049-9493

Fatin Sönmez 0000-0002-9630-1232

Ahmet Öztürk 0000-0002-5560-0578

Project Number 123M769
Publication Date October 23, 2024
Submission Date May 31, 2024
Acceptance Date August 4, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Kabakuş, A., Sönmez, F., & Öztürk, A. (2024). Thermal Analysis of Photovoltaic Panel Cooled by Electrospray Using Different Fluids. Duzce University Journal of Science and Technology, 12(4), 2271-2282. https://doi.org/10.29130/dubited.1492678
AMA Kabakuş A, Sönmez F, Öztürk A. Thermal Analysis of Photovoltaic Panel Cooled by Electrospray Using Different Fluids. DUBİTED. October 2024;12(4):2271-2282. doi:10.29130/dubited.1492678
Chicago Kabakuş, Abdüssamed, Fatin Sönmez, and Ahmet Öztürk. “Thermal Analysis of Photovoltaic Panel Cooled by Electrospray Using Different Fluids”. Duzce University Journal of Science and Technology 12, no. 4 (October 2024): 2271-82. https://doi.org/10.29130/dubited.1492678.
EndNote Kabakuş A, Sönmez F, Öztürk A (October 1, 2024) Thermal Analysis of Photovoltaic Panel Cooled by Electrospray Using Different Fluids. Duzce University Journal of Science and Technology 12 4 2271–2282.
IEEE A. Kabakuş, F. Sönmez, and A. Öztürk, “Thermal Analysis of Photovoltaic Panel Cooled by Electrospray Using Different Fluids”, DUBİTED, vol. 12, no. 4, pp. 2271–2282, 2024, doi: 10.29130/dubited.1492678.
ISNAD Kabakuş, Abdüssamed et al. “Thermal Analysis of Photovoltaic Panel Cooled by Electrospray Using Different Fluids”. Duzce University Journal of Science and Technology 12/4 (October 2024), 2271-2282. https://doi.org/10.29130/dubited.1492678.
JAMA Kabakuş A, Sönmez F, Öztürk A. Thermal Analysis of Photovoltaic Panel Cooled by Electrospray Using Different Fluids. DUBİTED. 2024;12:2271–2282.
MLA Kabakuş, Abdüssamed et al. “Thermal Analysis of Photovoltaic Panel Cooled by Electrospray Using Different Fluids”. Duzce University Journal of Science and Technology, vol. 12, no. 4, 2024, pp. 2271-82, doi:10.29130/dubited.1492678.
Vancouver Kabakuş A, Sönmez F, Öztürk A. Thermal Analysis of Photovoltaic Panel Cooled by Electrospray Using Different Fluids. DUBİTED. 2024;12(4):2271-82.