Yemek Atığı ve İnek Dışkısı Karışımından İki Kademeli Anaerobik Sistem ile Biyoenerji Üretimi
Year 2018,
Volume: 9 Issue: 1, 483 - 492, 05.04.2018
Mahmut Altınbaş
Ali Onur Kasarcı
Abstract
Bu çalışmada İnek Dışkısı (İD) ve Yemek Atığı (YA) karışımının metan ve hidrojen üretimini sağlayacak iki kademeli anaerobik sistemde, biyoenerji üretim performansı incelenmiştir. İD ve YA’nın ayrı çürütülmesinde gözlenecek olumsuz bileşenler, karışımda dengelenerek biyobozunurluk açısından olumlu hale getirilmiştir. Bu amaçla, seri bağlı iki reaktör yarı-kesikli besleme ile üç farklı toplam katı konsantrasyonda (%2.3, 3.3 ve 6.5) çalıştırılmıştır. İlk kademesinde hidrojen reaktörü70°C’de ikinci kademesinde metan reaktörü ise 35°C’de işletilmiştir. En yüksek hidrojen üretim verimi %6.5 katı madde konsantrasyonunda 56.5 L/kg TUKM ile gözlenirken en yüksek metan üretimi %3.3 katı madde konsantrasyonunda 233.7 L/kg TUKM olarak gözlenmiştir. Literatürde daha yüksek biyogaz üretim değerlerinin de olmasına karşın bu çalışmada İD ve YA’nın birlikte ardışık hidrojen ve metan üretiminde kullanılmasının verimli olduğunu göstermiştir. Farklı karakterizasyona sahip İD ve YA’nın birlikte çürütülmesi ile YA’nın tek başına çürütülmesinde gözlenebilecek Uçucu Yağ Asitleri (UYA) birikimi önlenmiştir. Organik yüklemedeki salınımlara karşı da daha iyi dengeleme ve koruma sağlanmıştır.
References
- Altinbas M., Balaban U., Ericyel K., Gulay A., Dereli R.K., Ersahin M.E., Arikan O., Aydin A.F. and Ozturk I. (2008). Pilot-scale experiments on two-stage mesophilic anaerobic digestion of food waste, CEOBIO Bioenergy: Challenges and Opportunities, International Conference and Exhibition on Bioenergy, 6th/9th April, Universidade do Minho, Guimaraes, Portugal.
- Ashekuzzaman, S.M., Poulsen, T.G. (2011). Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures, Bioresource Technology, 102, 2213–2218.
- Edelmann W., Engeli H. and Gradenecker M. (2000). Co-digestion of organic waste and sludge from sewage treatment, Water Science and Technology, 41(3), 213-221.
- Han, S.K., Shin, H.S. (2004). Performance of an innovative two-stage process converting food waste to hydrogen and methane, Journal of Air & Waste Management Association, 54, 242-249.
- Hartmann H., Angelidaki I. and Ahring B.K. (2003). Co-digestion of the organic fraction of municipal waste with other waste types, In Biomethanization of the Organic Fraction of Municipal Solid Wastes, Mata Alvarez J. (Ed), IWA Publishing, Cornwall, UK, pp. 181-199.
- Hwang, M. H., Jang, N. J., Hyun, S. H. and Kim, I. S. 2004. Anaerobic biohydrogen from ethanol fermentation: the role of pH, Biotechnology, 111, 297-309.
- Kasarcı, A.O. (2012). Yemekhane ve hayvan atıklarından biyoenerji geri kazanımı, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
- Kim H.W., Han S.K. and Shin H.S. (2003). The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge, Waste Management and Research, 21, 515-526.
- Kim H.W., Han S.K. and Shin H.S. (2004). Anaerobic co-digestion of sewage sludge and food waste using temperature-phased anaerobic digestion process, Water Science and Technology, 50(9), 107-114.
- Lay J.J., Lee Y. J., Noike T. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Water Research, 33, 2579–86.
- Lee J.P.; Lee J.S. and Park S.C. (1999) Two-pahase methanization of food wastes in pilot scale, Applied Biochemistry and Biotechnology, 79(1-3), 585.
- Lee, W.S., Chua, A.S.M., Yeoh, H.K., Ngoh, G.C: (2014). A review of the population and applications of waste-derived volatile fatty acids, Chemical Engineering Journal, 235, 83-99.
- Liu, D., Liu, D., Zeng, R.J., Angelidaki, I., 2006. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Research, 40, 2230–2236.
- Liu, D., Zeng, R.J., Angelidaki, I., (2008). Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70°C). Biotechnology and Bioengineering 100, 1108-1114.
- Traverso P.; Pavan P.; Bolzonella D.; Innocenti L.; Cecchi F. and Mata-Alvarez J. (2000). Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets, Biodegradation, 11(6), 407.
- Ward, A.J., Hobbs, P.J. Holliman, D.L. Jones, H. (2008). Optimisation of the anaerobic digestion of agricultural resources, Bioresource Technology, 99, 7928-7940.
- Weiland, P. (2010). Biogas production: current state and perspectives, Applied Microbiology and Biotechnology, 85 (4), 849-860.
Year 2018,
Volume: 9 Issue: 1, 483 - 492, 05.04.2018
Mahmut Altınbaş
Ali Onur Kasarcı
References
- Altinbas M., Balaban U., Ericyel K., Gulay A., Dereli R.K., Ersahin M.E., Arikan O., Aydin A.F. and Ozturk I. (2008). Pilot-scale experiments on two-stage mesophilic anaerobic digestion of food waste, CEOBIO Bioenergy: Challenges and Opportunities, International Conference and Exhibition on Bioenergy, 6th/9th April, Universidade do Minho, Guimaraes, Portugal.
- Ashekuzzaman, S.M., Poulsen, T.G. (2011). Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures, Bioresource Technology, 102, 2213–2218.
- Edelmann W., Engeli H. and Gradenecker M. (2000). Co-digestion of organic waste and sludge from sewage treatment, Water Science and Technology, 41(3), 213-221.
- Han, S.K., Shin, H.S. (2004). Performance of an innovative two-stage process converting food waste to hydrogen and methane, Journal of Air & Waste Management Association, 54, 242-249.
- Hartmann H., Angelidaki I. and Ahring B.K. (2003). Co-digestion of the organic fraction of municipal waste with other waste types, In Biomethanization of the Organic Fraction of Municipal Solid Wastes, Mata Alvarez J. (Ed), IWA Publishing, Cornwall, UK, pp. 181-199.
- Hwang, M. H., Jang, N. J., Hyun, S. H. and Kim, I. S. 2004. Anaerobic biohydrogen from ethanol fermentation: the role of pH, Biotechnology, 111, 297-309.
- Kasarcı, A.O. (2012). Yemekhane ve hayvan atıklarından biyoenerji geri kazanımı, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
- Kim H.W., Han S.K. and Shin H.S. (2003). The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge, Waste Management and Research, 21, 515-526.
- Kim H.W., Han S.K. and Shin H.S. (2004). Anaerobic co-digestion of sewage sludge and food waste using temperature-phased anaerobic digestion process, Water Science and Technology, 50(9), 107-114.
- Lay J.J., Lee Y. J., Noike T. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Water Research, 33, 2579–86.
- Lee J.P.; Lee J.S. and Park S.C. (1999) Two-pahase methanization of food wastes in pilot scale, Applied Biochemistry and Biotechnology, 79(1-3), 585.
- Lee, W.S., Chua, A.S.M., Yeoh, H.K., Ngoh, G.C: (2014). A review of the population and applications of waste-derived volatile fatty acids, Chemical Engineering Journal, 235, 83-99.
- Liu, D., Liu, D., Zeng, R.J., Angelidaki, I., 2006. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Research, 40, 2230–2236.
- Liu, D., Zeng, R.J., Angelidaki, I., (2008). Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70°C). Biotechnology and Bioengineering 100, 1108-1114.
- Traverso P.; Pavan P.; Bolzonella D.; Innocenti L.; Cecchi F. and Mata-Alvarez J. (2000). Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets, Biodegradation, 11(6), 407.
- Ward, A.J., Hobbs, P.J. Holliman, D.L. Jones, H. (2008). Optimisation of the anaerobic digestion of agricultural resources, Bioresource Technology, 99, 7928-7940.
- Weiland, P. (2010). Biogas production: current state and perspectives, Applied Microbiology and Biotechnology, 85 (4), 849-860.