Research Article
BibTex RIS Cite

Elektrikli Araçların Kablosuz Güç Transferi Sistemleri için Farklı Transformatör Modellerinin Tasarımı ve Analizi

Year 2022, Volume: 13 Issue: 1, 11 - 18, 30.03.2022
https://doi.org/10.24012/dumf.1079729

Abstract

Kablosuz güç aktarımı, elektrikli araçların, implante edilmiş tıbbi cihazların vb. kablosuz şarjın geniş uygulamaları nedeniyle gelişmekte olan bir teknolojidir. Tasarımcıların kablosuz güç aktarımını (KGA) daha verimli ve kullanıcı dostu haline getirebilmeleri için bu uygulamaların önemli noktalarını bilmeleri gerekmektedir. KGA sistemninin tasarımı için yüksek frekanslı bir transformatörün uygun tasarımı en öenmli adımdır. Bu yüksek frekanslı transformatörlerden güç aktarımı sırasında minimum kayıpları elde etmek için endüktif güç aktarım ilkesi kullanılmaktadır. Bu çalışmada, elektrikli araç şarjı için tasarlanmış yüksek frekanslı bir transformatörün tasarımı ve analizi sunulmuştur. Bu tasarımda, primer ve sekonder bobinler arasındaki farklı mesafelere sahip çeşitli transformatör konfigürasyonları, bağlantı katsayısı ve karşılıklı endüktans gibi kablosuz güç aktarım parametreleri için analiz edilmiştir. Tasarımlar, Sonlu Elemanlar Yöntemine dayalı çözüm gerçekleştiren ANSYS Maxwell yazılımı kullanılarak simüle edilmiş ve sonuçlar elde edilmiştir. Son olarak bu çalışmada, KGA sistemi için dairesel ve dikdörtgen tip transformatör tasarımlarının analiz sonuçları karşılaştırılmış ve optimum tasarım belirlenmeye çalışılmıştır.

References

  • [9] Ahmad A, Alam MS, Chabaan R (2018) A comprehensive review of wireless charging technologies for electric vehicles. IEEE Trans Transp Electrif 4(1):38–63
  • Bosshard R, Kolar JW (2016) Inductive power transfer for electric vehicle charging: technical challenges and trade-offs. IEEE Power Electron Mag 3(3):22–30
  • Chinthavali M, Onar OC, Campbell SL, Tolbert LM (2015) Integrated charger with wireless charging and boost functions for PHEV and EV applications. Oak Ridge National Laboratory Contract with the US Department of Energy, No. DE-AC05–000R22725
  • Daniel Ongayo, Moin Hanif (2015a) An overview of single-sided and double-sided winding inductive coupling transformers for wireless electric vehicle charging. IEEE 2nd International Future Energy Electronics Conference (IFEEC)
  • Gati E, Kampitsis G, Manias S (2017) Variable frequency controller for inductive power transfer in dynamic conditions’’. IEEE Trans Power Electron 32(2):1684–1696
  • Hashemi Z, Zohrabi F, Mardaneh M (2019) A multi-objective optimization of switched reluctance motor using a hybrid analytic-ANFIS model considering the vibrations. Iran J Sci Technol - Trans Elect Eng 43(2):361–371
  • Houran MA, Yang X, Chen W (2021) Two-degree-of-freedom WPT system using cylindrical-joint structure for applications with movable parts. IEEE Trans Circuits Syst II: Express Briefs 68(1):366–370
  • Huang X, Gao Y, Zhou J, Ma J, Zhang J, Fang Y (2016) Magnetic field design for optimal wireless power transfer to multiple receivers’’. IET Power Electron 9(9):1885–1893
  • Joseph PK, Devaraj E, Gopal A (2019) Overview of wireless charging and vehicle-to-grid integration of electric vehicles using renewable energy for sustainable transportation’’. IET Power Electron 12(4):627–638
  • [10] Khan-ngern W, Zenkner H (2014) Wireless power charging on electric vehicles. International Electrical Engineering Congress (IEECON), 2014. Chonburi, pp 1–4
  • [11] Zhong W, Hui SYR (2017) Charging time control of wireless power transfer systems without using mutual coupling information and wireless communication system’’. IEEE Trans Industr Electron 64(1):228–235 [12] Zeng Y, Qiu D, Meng X, Zhang B, Tang SC (2018) Optimised design of coils for wireless power transfer in implanted medical devices. IEEE J Electromagn, RF Microwav Med Biol 2(4):277–285
  • [13] Yi Z, Li M, Muneer B, Zhu Q (2019) High-efficiency mid-range inductive power transfer employing alternative-winding coils’’. IEEE Trans Power Electron 34(7):6706–6721
  • [14] Yang S, Deng X, Lu J, Wu Z, Du K (2020) light-load efficiency optimization for an LCC-parallel compensated inductive power transfer battery charger. Electron (Switz) 9(12):1–13
  • [15] Wang X, Xu J, Ma H, Zhang Y (2020) A reconstructed S-LCC topology with dual-type outputs for inductive power transfer systems. IEEE Trans Power Electron 35(12):12606–12611
  • [16] Trung NK, Minh TT (2020) Wireless charging system for electric bicycle application. Int J Power Electron Drive Syst 11(4):1926–1935
  • [17] Tian X, Chau KT, Liu W, Lee CHT (2021) Selective wireless power transfer using magnetic field editing. IEEE Trans Power Electron 36(3):2710–2719
  • [18] Rasekh N, Mirsalim M (2018) Evaluation study on an integration method for a DDQP using LCC and series compensation topologies for inductive power transfer. IET Electr Power Appl 12(9):1320–1327
  • [19] Raj U, Shankar R (2020) Deregulated automatic generation control using novel opposition-based interactive search algorithm cascade controller including distributed generation and electric vehicle. Iran J Sci Technol - Trans Elect Eng 44(3):1233–1251
  • [20] Prasad Jayathurathnage A (2017) Review on wireless power transfer technology. IEEE Asia Pacific Microwave Conference (APMC), 2017
  • [21] Onar OC, Campbell SL, Seiber LE, White CP, Chinthavali M (2016) A high-power wireless charging system development and integration for a toyota RAV4 electric vehicle. Oak Ridge National Laboratory Contract with the US Department of Energy No. DE-AC05–000R22725
  • [22] Patil D, McDonough MK, Miller JM, Fahimi B, Balsara PT (2018) Wireless power transfer for vehicular applications: overview and challenges. IEEE Trans Transp Electrif 4(1):3–37
  • [23] Moghaddami M, Sundararajan A, Sarwat AI (2018) A powerfrequency controller with resonance frequency tracking capability for inductive power transfer systems. IEEE Trans Ind Appl 54(2):1773–1783
  • [24] Lu J, Zhu G, Lin D, Zhang Y, Wang H (2021) Realizing constant current and constant voltage outputs and input zero phase angle of wireless power transfer systems with minimum component counts. IEEE Trans Intell Transp Syst 22(1):600–610
Year 2022, Volume: 13 Issue: 1, 11 - 18, 30.03.2022
https://doi.org/10.24012/dumf.1079729

Abstract

References

  • [9] Ahmad A, Alam MS, Chabaan R (2018) A comprehensive review of wireless charging technologies for electric vehicles. IEEE Trans Transp Electrif 4(1):38–63
  • Bosshard R, Kolar JW (2016) Inductive power transfer for electric vehicle charging: technical challenges and trade-offs. IEEE Power Electron Mag 3(3):22–30
  • Chinthavali M, Onar OC, Campbell SL, Tolbert LM (2015) Integrated charger with wireless charging and boost functions for PHEV and EV applications. Oak Ridge National Laboratory Contract with the US Department of Energy, No. DE-AC05–000R22725
  • Daniel Ongayo, Moin Hanif (2015a) An overview of single-sided and double-sided winding inductive coupling transformers for wireless electric vehicle charging. IEEE 2nd International Future Energy Electronics Conference (IFEEC)
  • Gati E, Kampitsis G, Manias S (2017) Variable frequency controller for inductive power transfer in dynamic conditions’’. IEEE Trans Power Electron 32(2):1684–1696
  • Hashemi Z, Zohrabi F, Mardaneh M (2019) A multi-objective optimization of switched reluctance motor using a hybrid analytic-ANFIS model considering the vibrations. Iran J Sci Technol - Trans Elect Eng 43(2):361–371
  • Houran MA, Yang X, Chen W (2021) Two-degree-of-freedom WPT system using cylindrical-joint structure for applications with movable parts. IEEE Trans Circuits Syst II: Express Briefs 68(1):366–370
  • Huang X, Gao Y, Zhou J, Ma J, Zhang J, Fang Y (2016) Magnetic field design for optimal wireless power transfer to multiple receivers’’. IET Power Electron 9(9):1885–1893
  • Joseph PK, Devaraj E, Gopal A (2019) Overview of wireless charging and vehicle-to-grid integration of electric vehicles using renewable energy for sustainable transportation’’. IET Power Electron 12(4):627–638
  • [10] Khan-ngern W, Zenkner H (2014) Wireless power charging on electric vehicles. International Electrical Engineering Congress (IEECON), 2014. Chonburi, pp 1–4
  • [11] Zhong W, Hui SYR (2017) Charging time control of wireless power transfer systems without using mutual coupling information and wireless communication system’’. IEEE Trans Industr Electron 64(1):228–235 [12] Zeng Y, Qiu D, Meng X, Zhang B, Tang SC (2018) Optimised design of coils for wireless power transfer in implanted medical devices. IEEE J Electromagn, RF Microwav Med Biol 2(4):277–285
  • [13] Yi Z, Li M, Muneer B, Zhu Q (2019) High-efficiency mid-range inductive power transfer employing alternative-winding coils’’. IEEE Trans Power Electron 34(7):6706–6721
  • [14] Yang S, Deng X, Lu J, Wu Z, Du K (2020) light-load efficiency optimization for an LCC-parallel compensated inductive power transfer battery charger. Electron (Switz) 9(12):1–13
  • [15] Wang X, Xu J, Ma H, Zhang Y (2020) A reconstructed S-LCC topology with dual-type outputs for inductive power transfer systems. IEEE Trans Power Electron 35(12):12606–12611
  • [16] Trung NK, Minh TT (2020) Wireless charging system for electric bicycle application. Int J Power Electron Drive Syst 11(4):1926–1935
  • [17] Tian X, Chau KT, Liu W, Lee CHT (2021) Selective wireless power transfer using magnetic field editing. IEEE Trans Power Electron 36(3):2710–2719
  • [18] Rasekh N, Mirsalim M (2018) Evaluation study on an integration method for a DDQP using LCC and series compensation topologies for inductive power transfer. IET Electr Power Appl 12(9):1320–1327
  • [19] Raj U, Shankar R (2020) Deregulated automatic generation control using novel opposition-based interactive search algorithm cascade controller including distributed generation and electric vehicle. Iran J Sci Technol - Trans Elect Eng 44(3):1233–1251
  • [20] Prasad Jayathurathnage A (2017) Review on wireless power transfer technology. IEEE Asia Pacific Microwave Conference (APMC), 2017
  • [21] Onar OC, Campbell SL, Seiber LE, White CP, Chinthavali M (2016) A high-power wireless charging system development and integration for a toyota RAV4 electric vehicle. Oak Ridge National Laboratory Contract with the US Department of Energy No. DE-AC05–000R22725
  • [22] Patil D, McDonough MK, Miller JM, Fahimi B, Balsara PT (2018) Wireless power transfer for vehicular applications: overview and challenges. IEEE Trans Transp Electrif 4(1):3–37
  • [23] Moghaddami M, Sundararajan A, Sarwat AI (2018) A powerfrequency controller with resonance frequency tracking capability for inductive power transfer systems. IEEE Trans Ind Appl 54(2):1773–1783
  • [24] Lu J, Zhu G, Lin D, Zhang Y, Wang H (2021) Realizing constant current and constant voltage outputs and input zero phase angle of wireless power transfer systems with minimum component counts. IEEE Trans Intell Transp Syst 22(1):600–610
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Yıldırım Özüpak 0000-0001-8461-8702

Publication Date March 30, 2022
Submission Date February 26, 2022
Published in Issue Year 2022 Volume: 13 Issue: 1

Cite

IEEE Y. Özüpak, “Elektrikli Araçların Kablosuz Güç Transferi Sistemleri için Farklı Transformatör Modellerinin Tasarımı ve Analizi”, DUJE, vol. 13, no. 1, pp. 11–18, 2022, doi: 10.24012/dumf.1079729.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456