BibTex RIS Cite

Portföy Optimizasyonunda Ortalama-Varyans-Çarpıklık-BasıklıkYaklaşımı: İMKB Uygulaması

Year 2011, Volume: 11 Özel Sayı, 9 - 17, 01.11.2011

Abstract

Belli kısıtlar altında yatırımcıların temel beklentilerini karşılayacak
en iyi yatırım araçları karmasının oluşturulması olan portföy optimizasyonu.
finans dünyasında önemli bir yere sahiptir. Portföy optimizasyonunda,
oluşturulan portföyler için getiri ve risk arasında
bir dengelemeyi ifade eden Markowitz’in (1952) Ortalama Varyans
modeli, bu alanda kritik bir role sahiptir ve yapılan diğer çalışmaları
da etkilemiştir.
Markowitz’in Ortalama-Varyans modelinde, portföyün riski belirlenirken
sadece menkul kıymet getirilerinin kovaryans değerleri dikkate
alınmaktadır. Bu model, yatırımcıların kuadratik fayda fonksiyonuna
sahip olduğu ve hisse senedi getirilerin normal dağıldığı
varsayımlarına dayandırılmıştır. Bu varsayımların geçerliliğini ince- leyen çok sayıda çalışmada karşıt bulgulara ulaşılmıştır. Varlık getirilerinin
anlamlı derecede çarpıklık ve basıklık özelliği gösterdiği
saptanmıştır. Bu bulgular ışığında, son yıllarda araştırmacıların portföy
seçiminde yüksek dereceden momentleri kullandıkları görülmektedir
(Konno et al, 1993; Chunhachinda et al, 1997; Liu et al, 2003;
Harvey et al, 2004; Jondeau and Rockinger, 2006; Lai et al, 2006; Jana
et al, 2007; Maringer and Parpas, 2009; Briec et al, 2007; Taylan and
Tatlıdil, 2010).
Bu çalışmada, ortalama-varyans-çarpıklık ve basıklık modeli çerçevesinde,
beklenen getiri ve çarpıklığın maksimize edilmesi, varyans
ve basıklığın minimize edilmesi gibi birbiri ile çelişen ve aynı anda
karşılanması gereken portföy amaçları, oluşturulacak polinomal hedef
programlama yöntemi ile ele alınacaktır. Oluşturulacak PGP modeli,
İstanbul Menkul Kıymetler Borsası (İMKB) 30 hisse senetleri üzerinde
test edilecektir. Daha önce yapılmış olan çeşitli ampirik çalışma
sonuçları, tüm yatırımcı tercihleri ve hisse senedi endeksleri için,
ortalama-varyans-çarpıklık-basıklık çerçevesinde çoklu çelişen portföy
amaçlarının çözümünde PGP yaklaşımının etkili bir yol olduğunu
işaret etmektedir. Bu çalışmada, yatırımcıların yüksek dereceden
momentler ile ilgili tercihlerine göre portföyler oluşturulacaktır. Bu
tercihlerin hem portföy içindeki hisse senedi dağılımına, hem de
portföylerin getirilerinin tanımlayıcı istatistiklerine etkileri incelenecektir.
Bu çalışmanın bir diğer amacı da, portföy optimizasyonunda
hisse senetlerinin getirilerinin çarpıklık ve basıklığının göz önünde
bulundurulmasının portföy getirilerinin tanımlayıcı istatistikleri
üzerinde yarattığı etkilerin de incelenmesidir.

References

  • Briec, W., Kerstens K., and Jokung O., (2007) “Me- an-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach” Mana- gement Science, 53(1):135–149.
  • Canela, M. Á. and Collazo E. P. (2007) “Portfolio Selection With Skewness in Emerging Market Industri- es” Emerging Markets Review, 8:230–250.
  • Chang, C. T. (2002) “Continuous Optimization A Modified Goal Programming Model For Piecewise Line- ar Functions” European Journal of Operational Research, 139:62–67.
  • Chen, H. H. and Shia B. C. (2007) “Multinational Portfolio Construction Using Polynomial Goal Program- ming and Lower Partial Moments” Journal of the Chinese Statistical Association, 45:130–143.
  • Chunhachinda, P., Dandapani K., Hamid S., and Prakash A.J. (1997) “Portfolio Selection And Skewness: Evidence From International Stock Markets” Journal of Banking & Finance, 21:143–167.
  • Cremers, J. H., Kritzman M. and Page S. (2003) “Portfolio Formation With Higher Moments And Plau- sible Utility” Revere Street Working Paper Series, Financial Economics, 1–25.
  • Deckro, R. F. and John E. H. (2002) “Polynomi- al Goal Programming: A Procedure For Modeling Pre- ference Trade-Offs” Journal of Operations Management, 7:149-164
  • Harvey, C. R., Liechty J.C., Liechty M.W., Müller P. (2004) “Portfolio Selection With Higher Moments” Social Science Research Network Working Paper Series, No: 2942745.
  • Hashemi, S. M, Ghatee M., Hashemi B. (2006) “Fuzzy Goal Programming: Complementary Slackness Conditions and Computational Schemes” Applied Mat- hematics and Computation, 179:506–522.
  • Jana, P., T.K. Roy and S.K. Mazumder (2007) “ Multi- Objective Mean–Variance–Skewness Model For Portfolio Optimization” Advanced Modelling and Opti- mization, 9(1):181–193.
  • Jondeau, E. and Rockinger M., (2004) “Optimal Portfolio Allocation Under Higher Moments” EFMA 2004 Basel Meetings Paper.
  • Jondeau, E. and Rockinger M. (2006) “Optimal Portfolio Allocation Under Higher Moments”, European Financial Management, 12(1):29–55.
  • Jurczenko, E., Maillet B. and Merlin P. (2005) “Hedge Funds Portfolio Selection with Higher-order Moments: A Non-parametric Mean-Variance-Skewness- Kurtosis Efficient Frontier” in Multi– Moment Asset Al- location and Pricing Models, John Wiley, 1–28.
  • Kale, J. K. (2009) “Portfolio Optimization Using The Quadratic Optimization System and Publicly Ava- ilable Information on The www” Managerial Finance, 35(5):439–450.
  • Lai, T. Y., (1991) “Portfolio Selection with Skewness: A Multiple - Objective Approach” Review of Quantitati- ve Finance and Accounting, 1(3):293–305.
  • Lai, K. K., Lean Y. and Shouyang W. (2006) “Mean– Variance–Skewness–Kurtosis–Based Portfolio Optimiza- tion” Proceedings of The First International Multi- Sympo- siums on Computer and Computational Sciences, 1–6.
  • Liu, S., Wang S.Y. and W. Qiu (2003): “Mean–Vari- ance–Skewness Model for Portfolio Selection With Tran- saction Costs” International Journal of Systems Science, 34(4):255–262.
  • Konno, H., Shirakawa H. and Yamazaki H.(1993) “A Mean-Absolute Deviation-Skewness Portfolio Opti- mization Model” Journal Annals of Operations Research, 45(1):205-220.
  • Maringer, D., and Parpas P. (2009) “Global optimi- zation of Higher Order Moments in Portfolio Selection”, Journal of Global Optimization, 43:219–230.
  • Prakash, A. J., Chang C.H. and Pactwa T.E.,(2003) “Selecting a Portfolio with Skewness: Recent Evidence from US, European, and Latin America Equity Markets” Journal of Banking and Finance, 27: 1375–1390.
  • Proelss, J., and Schweizer D. (2009) “ Polynomial Goal Programming and the Implicit Higher Moment Preferences of U.S. Institutional Investors in Hedge Funds” Working Paper Series, 1–44.
  • Singh , A. K., Sahu R. and Bharadwaj S. (2010) “Portfolio Evaluation Using OWA – Heuristic Algo- rithm and Data Envelopment Analysis” The Journal of Risk Finance, 11(1):75–88.
  • Smimou, K. and Thulasiram R.K. (2010) “A Simple Parallel Algorithm For Large-Scale Portfolio Problems” The Journal of Risk Finance, 11(5):481–495.
  • Sun, Q. and Yan Y., (2003) “Skewness Persistence with Optimal Portfolio Selection” Journal of Banking and Finance, 27:1111–1121.
  • Taylan, A. S. and Tatlıdil H. (2010) “Portfolio Op- timization With Shortage Function and Higher Order Moments: An Application In ISE-30” International Conference, June 23–26, Izmir.

Mean–Variance–Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange

Year 2011, Volume: 11 Özel Sayı, 9 - 17, 01.11.2011

Abstract

Portfolio optimization, the construction of the best combination of
investment instruments that will meet the investors’ basic expectations
under certain limitations, has an important place in the finance
world. In the portfolio optimization, the Mean Variance model of Markowitz
(1952) that expresses a tradeoff between return and risk for a
set of portfolios, has played a critical role and affected other studies
in this area.
In the Mean Variance model, only the covariances between securities
are considered in determining the risk of portfolios. The model
is based on the assumptions that investors have a quadratic utility
function and the return of the securities is distributed normally. Various
studies that investigate the validity of these assumptions find
evidence against them. Asset returns have significant skewness and
kurtosis. In the light of these findings, it is seen that in recent years
researchers use higher order of moments in the portfolio selection
(Konno et al, 1993; Chunhachinda et al, 1997; Liu et al, 2003; Harvey
et al, 2004; Jondeau and Rockinger, 2006; Lai et al, 2006; Jana et al,
2007; Maringer and Parpas, 2009; Briec et al, 2007; Taylan and Tatlıdil,
2010).
In this study, in the mean- variance- skewness- kurtosis framework,
multiple conflicting and competing portfolio objectives such as
maximizing expected return and skewness and minimizing risk and
kurtosis simultaneously, will be addressed by construction of a polynomial
goal programming (PGP) model. The PGP model will be tested
on Istanbul Stock Exchange (ISE) 30 stocks. Previous empirical results
indicate that for all investor preferences and stock indices, the PGP
approach is highly effective in order to solve the multi conflicting
portfolio goals in the mean – variance - skewness – kurtosis framework.
In this study, portfolios will be formed in accordance with the
investor preferences over incorporation of higher moments. The effects
of preferences both on the combination of stocks in the portfolios
and descriptive statistics of portfolio returns will be analyzed.
Another aim of this study is to investigate the impacts of the incorporation
of skewness and kurtosis of asset returns into the portfolio
optimization on portfolios’ returns descriptive statistics.

References

  • Briec, W., Kerstens K., and Jokung O., (2007) “Me- an-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach” Mana- gement Science, 53(1):135–149.
  • Canela, M. Á. and Collazo E. P. (2007) “Portfolio Selection With Skewness in Emerging Market Industri- es” Emerging Markets Review, 8:230–250.
  • Chang, C. T. (2002) “Continuous Optimization A Modified Goal Programming Model For Piecewise Line- ar Functions” European Journal of Operational Research, 139:62–67.
  • Chen, H. H. and Shia B. C. (2007) “Multinational Portfolio Construction Using Polynomial Goal Program- ming and Lower Partial Moments” Journal of the Chinese Statistical Association, 45:130–143.
  • Chunhachinda, P., Dandapani K., Hamid S., and Prakash A.J. (1997) “Portfolio Selection And Skewness: Evidence From International Stock Markets” Journal of Banking & Finance, 21:143–167.
  • Cremers, J. H., Kritzman M. and Page S. (2003) “Portfolio Formation With Higher Moments And Plau- sible Utility” Revere Street Working Paper Series, Financial Economics, 1–25.
  • Deckro, R. F. and John E. H. (2002) “Polynomi- al Goal Programming: A Procedure For Modeling Pre- ference Trade-Offs” Journal of Operations Management, 7:149-164
  • Harvey, C. R., Liechty J.C., Liechty M.W., Müller P. (2004) “Portfolio Selection With Higher Moments” Social Science Research Network Working Paper Series, No: 2942745.
  • Hashemi, S. M, Ghatee M., Hashemi B. (2006) “Fuzzy Goal Programming: Complementary Slackness Conditions and Computational Schemes” Applied Mat- hematics and Computation, 179:506–522.
  • Jana, P., T.K. Roy and S.K. Mazumder (2007) “ Multi- Objective Mean–Variance–Skewness Model For Portfolio Optimization” Advanced Modelling and Opti- mization, 9(1):181–193.
  • Jondeau, E. and Rockinger M., (2004) “Optimal Portfolio Allocation Under Higher Moments” EFMA 2004 Basel Meetings Paper.
  • Jondeau, E. and Rockinger M. (2006) “Optimal Portfolio Allocation Under Higher Moments”, European Financial Management, 12(1):29–55.
  • Jurczenko, E., Maillet B. and Merlin P. (2005) “Hedge Funds Portfolio Selection with Higher-order Moments: A Non-parametric Mean-Variance-Skewness- Kurtosis Efficient Frontier” in Multi– Moment Asset Al- location and Pricing Models, John Wiley, 1–28.
  • Kale, J. K. (2009) “Portfolio Optimization Using The Quadratic Optimization System and Publicly Ava- ilable Information on The www” Managerial Finance, 35(5):439–450.
  • Lai, T. Y., (1991) “Portfolio Selection with Skewness: A Multiple - Objective Approach” Review of Quantitati- ve Finance and Accounting, 1(3):293–305.
  • Lai, K. K., Lean Y. and Shouyang W. (2006) “Mean– Variance–Skewness–Kurtosis–Based Portfolio Optimiza- tion” Proceedings of The First International Multi- Sympo- siums on Computer and Computational Sciences, 1–6.
  • Liu, S., Wang S.Y. and W. Qiu (2003): “Mean–Vari- ance–Skewness Model for Portfolio Selection With Tran- saction Costs” International Journal of Systems Science, 34(4):255–262.
  • Konno, H., Shirakawa H. and Yamazaki H.(1993) “A Mean-Absolute Deviation-Skewness Portfolio Opti- mization Model” Journal Annals of Operations Research, 45(1):205-220.
  • Maringer, D., and Parpas P. (2009) “Global optimi- zation of Higher Order Moments in Portfolio Selection”, Journal of Global Optimization, 43:219–230.
  • Prakash, A. J., Chang C.H. and Pactwa T.E.,(2003) “Selecting a Portfolio with Skewness: Recent Evidence from US, European, and Latin America Equity Markets” Journal of Banking and Finance, 27: 1375–1390.
  • Proelss, J., and Schweizer D. (2009) “ Polynomial Goal Programming and the Implicit Higher Moment Preferences of U.S. Institutional Investors in Hedge Funds” Working Paper Series, 1–44.
  • Singh , A. K., Sahu R. and Bharadwaj S. (2010) “Portfolio Evaluation Using OWA – Heuristic Algo- rithm and Data Envelopment Analysis” The Journal of Risk Finance, 11(1):75–88.
  • Smimou, K. and Thulasiram R.K. (2010) “A Simple Parallel Algorithm For Large-Scale Portfolio Problems” The Journal of Risk Finance, 11(5):481–495.
  • Sun, Q. and Yan Y., (2003) “Skewness Persistence with Optimal Portfolio Selection” Journal of Banking and Finance, 27:1111–1121.
  • Taylan, A. S. and Tatlıdil H. (2010) “Portfolio Op- timization With Shortage Function and Higher Order Moments: An Application In ISE-30” International Conference, June 23–26, Izmir.
There are 25 citations in total.

Details

Other ID JA25CZ86AK
Journal Section Research Article
Authors

Burcu Aracıoğlu This is me

Fatma Demircan This is me

Haluk Soyuer This is me

Publication Date November 1, 2011
Published in Issue Year 2011 Volume: 11 Özel Sayı

Cite

APA Aracıoğlu, B., Demircan, F., & Soyuer, H. (2011). Mean–Variance–Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange. Ege Academic Review, 11(5), 9-17.
AMA Aracıoğlu B, Demircan F, Soyuer H. Mean–Variance–Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange. ear. November 2011;11(5):9-17.
Chicago Aracıoğlu, Burcu, Fatma Demircan, and Haluk Soyuer. “Mean–Variance–Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange”. Ege Academic Review 11, no. 5 (November 2011): 9-17.
EndNote Aracıoğlu B, Demircan F, Soyuer H (November 1, 2011) Mean–Variance–Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange. Ege Academic Review 11 5 9–17.
IEEE B. Aracıoğlu, F. Demircan, and H. Soyuer, “Mean–Variance–Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange”, ear, vol. 11, no. 5, pp. 9–17, 2011.
ISNAD Aracıoğlu, Burcu et al. “Mean–Variance–Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange”. Ege Academic Review 11/5 (November 2011), 9-17.
JAMA Aracıoğlu B, Demircan F, Soyuer H. Mean–Variance–Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange. ear. 2011;11:9–17.
MLA Aracıoğlu, Burcu et al. “Mean–Variance–Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange”. Ege Academic Review, vol. 11, no. 5, 2011, pp. 9-17.
Vancouver Aracıoğlu B, Demircan F, Soyuer H. Mean–Variance–Skewness–Kurtosis Approach to Portfolio Optimization: An Application in İstanbul Stock Exchange. ear. 2011;11(5):9-17.