Research Article
BibTex RIS Cite
Year 2019, Volume: 9 Issue: 2, 40 - 66, 09.10.2019

Abstract

References

  • Agarwal, R. & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361-391.
  • Ahmad, U.N.U., Amin, S.M. & Ismail, W.K.W. (2009). The impact of technostress on organisational commitment among Malaysian academic librarians. Singapore Journal of Library and Information Management, 38, 103- 123.
  • Akman, I. & Mishra, A. (2015). Sector diversity in Green information technology practices: Technology Acceptance Model perspective. Computers in Human Behavior, 49, 477–486.
  • Alkaya, A. & Şahin, F. (2018). Bilgi paylaşımının Teknoloji Kabul Modeli üzerinden incelenmesi; Bir sosyal ağ uygulaması. Uşak Üniversitesi Sosyal Bilimler Dergisi, 11(Özel sayı), 11-21.
  • Arnetz,B. B. & Berg, M. (1999). Melatonin and adrenocorticotropic hormone levels in video display unit workers during work and leisure. Journal of Occupational Environmental Medicine, 38, 1108–1110.
  • Arnetz, B.B. & Wiholm, C. (1997). Technological stress: psychophysiological symptoms in modern offices. Journal of Psychosomatic Research, 43(1), 35–42.
  • Avcu Yücel, Ü. & Gülbahar, Y. (2013). Technology Acceptance Model: A Review of the prior predictors. Ankara University Journal of Faculty of Educational Sciences, 46(1), 89-109.
  • Avcu, D.Ü. & Gökdaş, İ. (2012). İlköğretim ikinci kademe öğretmenlerinin bilgi ve iletişim teknolojilerine ilişkin kabul ve kullanım niyetleri. Adnan Menderes Üniversitesi Eğitim Fakültesi Dergisi, 3(1), 42-59.
  • Ayyagari, R., Grover, V. & Purvis, R. (2011). Technostress: technological antecedents and implications. MIS Quarterly, 35(4), 831–858.
  • Bağlıbel, M., Samancıoğlu, M. & Summak, S. (2010). Okul yöneticileri tarafından e-okul uygulamasının Genişletilmiş Teknoloji Kabul Modeline göre değerlendirilmesi. Mustafa Kemal University Journal of Social Sciences Institute, 7(13), 331 – 348.
  • Baran, B., & Ata, F. (2013). Üniversite öğrencilerinin Web 2.0 teknolojileri kullanma durumları, beceri düzeyleri ve eğitsel olarak faydalanma durumları. Eğitim ve Bilim, 38(169), 192-208.
  • Bitchteler, J. (1987). Technostress in libraries: Causes, effects and solutions. The Electronic Library, 5(5), 282-287.
  • Bolat, Y.İ., Aydemir, M. & Karaman, S. (2017). Uzaktan eğitim öğrencilerinin öğretimsel etkinliklerde mobil internet kullanımlarının teknoloji kabul modeline göre incelenmesi. GEFAD/GUJGEF, 37(1), 63-91
  • Brillhart, P.E. (2004). Technostress in the workplace: Managing stress in the electronic workplace. Journal of American Academy of Business, 5(1/2), 302–307.
  • Brod, C. (1984). Technostress: The human cost of the computer revolution. Reading, MA: Addison-Wesley.
  • Burke, M.A.S. (2005). Technological stressors of Louisiana baccalaureate nurse educators. Doctoral dissertation. Louisiana State University.
  • Bülbül, T. & Çuhadar, C. (2012) Okul yöneticilerinin teknoloji liderliği öz-yeterlik algıları ile bilgi ve iletişim teknolojilerine yönelik kabulleri arasındaki ilişkinin incelenmesi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 23, 474 - 499.
  • Califf, C.B., Sarker, S., Sarker, S. & Fitzgerald, C. (2015). The bright and dark sides of technostress: An empirical study of healthcare workers. In Thirty Sixth International Conference on Information Systems, Fort Worth, 1-12.
  • Chatzoglou, P.D., Sarigiannidis, L., Vraimaki, E. & Diamantidis, A. (2009). Investigating Greek employees' intention to use web-based training. Computers and Education, 53(3), 877-889.
  • Cheng, C.I., Chen, S.C. & Yen, D.C. (2015). Continuance intention of E-portfolio system: A confirmatory and multigroup invariance analysis of Technology Acceptance Model. Computer Standards & Interfaces, 42, 17–23.
  • Cheung, C.M.K. & Lee, M.K.O. (2011). Exploring the gender differences in student acceptance of an internet-based learning medium. Technology Acceptance in Education. Published by: Sense Publishers, P.O. Box 21858, 3001 AW Rotterdam, Netherlands.
  • Chuttur M.Y. (2009). Overview of the Technology Acceptance Model: Origins, developments and future directions, Indiana University, USA. Sprouts: Working Papers on Information Systems, 9(37).
  • Coffin, R. J., & MacIntyre, P.D. (1999). Motivational influences on computer-related affective states. Computer in Human Behavior, 15 , 549–569. http://dx.doi.org/ 10.1016/S0747-5632(99)00036-9
  • Çetin, D. & Bülbül, T. (2017). Okul yöneticilerinin teknostres algıları ile bireysel yenilikçilik özellikleri arasındaki ilişkinin incelenmesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(3), 1241-1264.
  • Çoklar, A.N., Efilti, E. & Sahin, L. (2017). Defining teachers' technostress levels: A scale development. Online Submission, 8(21), 28-41.
  • Çoklar, A.N., Efilti, E. & Şahin, Y.L. (2016). Investigation of techno-stress levels of teachers who were included in technology integration processes. TOJET: The Turkish Online Journal of Educational Technology, Special Issue for INTE 2016, 1331-1339.
  • Çoklar, A.N. & Şahin, Y.L. (2011). Technostress levels of social network users based on ICTs in Turkey. European Journal of Social Science, 23(2), 171–182.
  • Çubukçu, Z., Tosuntaş, Ş.B. & Kırcaburun, K. (2017). Investigation of pre-service teachers' opinions toward mobile technologies within the frame of Technology Acceptance Model. Asya Öğretim Dergisi, 5(2), 1-18.
  • Davis, F. (1985). A technology acceptance model for empirically testing new end-user information systems: theory and results. Unpublished Doctoral dissertation, MIT Sloan School of Management, Cambridge, MA.
  • Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. www.jstor.org
  • Dumpit, D.Z. & Fernandez, C.J. (2017). Analysis of the use of social media in higher Education Institutions (HEIs) using the Technology Acceptance Model. International Journal of Educational Technology in Higher Education, 14(5), 1-16.
  • Evans, E.M.W. (2013). Understanding productivity and technostress for oncology nurses using an electronic health record (EHR) to increase safety, quality, and effectiveness of care for patients with cancer. Doctoral dissertation. Capella University.
  • Fathema, N., Shannon, D. & Ross, M. (2015). Expanding the Technology Acceptance Model (TAM) to examine faculty use of Learning Management Systems (LMSs) in higher education institutions. MERLOT Journal of Online Learning and Teaching, 11(2).
  • Fischer, T. & Riedl, R. (2017). Technostress research: A nurturing ground for measurement pluralism? Communications of the Association for Information Systems, 40(17), 375-401.
  • Fischer, T. & Riedl, R. (2015). The status quo of neurophysiology in organizational technostress research: A Review of Studies Published from 1978 to 2015. In: Davis, F.D., Riedl, R., Vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience, 10, 9–17. Springer International Publishing, Cham.
  • Frankel, J.R. & Wallen, N.E. (2006). How to design and evaluate research in education. New York: McGrawHill.
  • Furniss, R.D. (2014). Technostress effect on task productivity in radiologic healthcare. Doctoral dissertation. Capella University.
  • Güldal, H. (2014). Bulut tabanlı bir ders yönetim sistemi yazılımının geliştirilmesine dayalı olarak öğretim elemanı ve öğrencilerin teknoloji kabullerinin incelenmesi. Doktora Tezi. Trakya Üniversitesi.
  • Hardy, J.V. (1999). Teacher attitudes toward and knowledge of computer technology. Computers in the Schools, 14(3-4), 119-136, DOI: 10.1300/J025v14n03_11
  • Huffman, A.H., Whetten, J. & Huffman, W.H. (2013). Using technology in higher education: The influence of gender roles on technology self-efficacy. Computers in Human Behavior, 29(4), 1779–1786. doi:10.1016/j.chb.2013.02.012
  • Igbaria, M. & Parasuraman, S. (1989). A path analytic study of individual characteristics, computer anxiety and attitudes toward microcomputers. Journal of Management, 15(3), 373–388.
  • Ilgaz, G., Özgür, H. & Çuhadar, C. (2016). The Adaptation of Technostress Scale into Turkish. Abstracts of the 11th International Balkan Education and Science Congress, (p.69), Poreč, Croatia.
  • Iqbal, S. & Bhatti, Z.A. (2015). An investigation of university student readiness towards M-learning using Technology Acceptance Model. International Review of Research in Open and Distributed Learning, 16(4).
  • Jena, R.K. (2015). Technostress in ICT enabled collaborative learning environment: An empirical study among Indian academician. Computers in Human Behavior, 51, 1116-1123.
  • Joo, Y.J., Lim, K.Y. & Kim, N.H. (2016). The effects of secondary teachers’ technostress on the intention to use technology in South Korea. Computers & Education, 95, 114-122.
  • Kalyoncuoğlu, S. (2018). Tüketicilerin online alışverişlerindeki sanal kart kullanımlarının Teknoloji Kabul Modeli ile incelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 20(2), 193-213.
  • Karasar, N. (2008). Bilimsel araştırma yöntemi: kavramlar, ilkeler, teknikler (Onsekizinci baskı). Ankara: Nobel Yayın Dağıtım.
  • Khanh, N. T. V. & Gim, G. (2014). Factors influencing mobile-learning adoption intention: An empirical investigation in high education. Journal of Social Sciences. 10(2):51-62. http://dx.doi.org/10.3844/jssp.2014.51.62.
  • Hsiao, K.L. (2017). Compulsive mobile application usage and technostress: the role of personality traits. Online Information Review, 41(2), 272-295. https://doi.org/10.1108/OIR-03-2016-0091
  • King, W.R. & He, J. (2006). A meta-analysis of The Technology Acceptance Model. Information & Management, 43, 740–755.
  • Krishnan, S. (2017). Personality and espoused cultural differences in technostress creators. Computers in Human Behavior, 66, 154-167.
  • Legris, P., Ingham, J. & Collerette, P. (2003). Why do people use information technology? A critical review of The Technology Acceptance Model. Information and Management, 40(3), 191-204.
  • Longman, S.M.D. (2013). A comparison of the perceptions of technostress experienced by teachers versus technology used by teachers in elementary education in a southeastern school district. Doctoral dissertation. Southeastern Louisiana University.
  • Lu, Y., Papagiannidis, S. & Alamanos, E. (2019). Exploring the emotional antecedents and outcomes of technology acceptance. Computers in Human Behavior, 90, 153–169.
  • Luan, W.S. & Teo, T. (2011). Student teachers’ acceptance of Computer Technology: An Application of the Technology Acceptance Model (TAM). Technology Acceptance in Education. Published by: Sense Publishers, P.O. Box 21858, 3001 AW Rotterdam, Netherlands.
  • Mahalakshmi, K. & Sornam, S.A. (2011). Ergonomics and techno stress among library professionals of engineering colleges of Anna University. Singapore Journal of Library & Information Management, 40, 89-102.
  • Maican, C.I., Cazan, A.M., Lixandroiu, R.C. & Dovleac, L. (2019). A study on academic staff personality and technology acceptance: The case of communication and collaboration applications. Computers & Education, 128, 113–131.
  • Marchiori, D.M., Mainardes, E.W. & Rodrigues, R.G. (2018). Do ındividual characteristics influence the types of Technostress reported by workers? International Journal of Human–Computer Interaction, 35(3), 218-230. DOI: 10.1080/10447318.2018.1449713
  • Mikkelsen, A., Ogaard, T., Lindoe, P.H. & Olsen, O.E. (2002). Job characteristics and computer anxiety in the production industry. Computers in Human Behavior, 18(3), 223–239. doi:10.1016/S0747- 5632(01)00051-6
  • Morris, M.G. & Venkatesh, V. (2000). Age differences in technology adoption decisions: Implications for a changing work force. Personel Psychology, 53(2), 375–403.
  • Orhan Göksun, D. (2016). Teknostresin eğitim alanına yönelik örtük moderatörleri. IV. International Instructional Technologies & Teacher Education Symposium, Fırat University, Elazığ/Turkey, 6-8 October, 189-194.
  • Özer, G., Günlük, M. & Özcan, M. (2019). Muhasebe akademisyenlerinin muhasebe eğitiminde uzaktan eğitim uygulamaları kullanımına yönelik algılarının Teknoloji Kabul Modeli çerçevesinde incelenmesi. Muhasebe ve Vergi Uygulamaları Dergisi, 12(1), 65-90.
  • Park, S.Y. (2009). An analysis of the Technology Acceptance Model in understanding university students’ behavioral intention to use e-Learning. Educational Technology & Society, 12(3), 150–162.
  • Persico, D., Manca, S. & Pozzi, F. (2014). Adapting the Technology Acceptance Model to evaluate the innovative otential of e-learning systems. Computers in Human Behavior, 30, 614–622.
  • Porter, E.C. & Donthu, N. (2006). Using the Technology Acceptance model to explain how attitudes determine internet usage: The role of perceived access barriers and demographics. Science Direct, Journal of Business Research, 59, 999–1007.
  • Ragu-Nathan, T.S., Tarafdar, M., Ragu-Nathan, B.S. & Tu, Q. (2008). The consequences of technostress for end users in organizations: Conceptual development and empirical validation. Information Systems Research, 19(4), 417–433.
  • Salanova, M., Llorens, S. & Cifre, E. (2013) The dark side of technologies: Technostress among users of information and communication technologies. International Journal of Psychology, 48(3), 422-436, DOI: 10.1080/00207594.2012.680460.
  • Salo, M., Pirkkalainen, H. & Koskelainen, T. (2018). Technostress and social networking services: Explaining users’ concentration, sleep, identity, and social relation problems. Information Systems Journal, 1-28.
  • Sanchez-Franco, M.J. (2006) Exploring the influence of gender on the web usage via partial least square. Behaviour & Information Technology, 25(1), 19-36.
  • Sanderlin, T.K. (2004). Managing Technostress in the organizational environment: Symptoms and solutions. Annals of the American Psychotherapy Association, 7, 26-32.
  • Scherer, R., Siddiq, F. & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35.
  • Schoonenboom, J. (2014). Using an adapted, task-level technology acceptance model to explain why instructors in higher education intend to use some learning management system tools more than others. Computers & Education, 71, 247–256.
  • Shen, C.X., Liu, R.D. & Wang, D. (2013). Why are children attracted to the Internet? The role of need satisfaction perceived online and perceived in daily real life. Computers in Human Behavior, 29(1), 185–192.
  • Shu, Q., Tu, Q., & Wang, K. (2011). The impact of computer self-efficacy and technology dependence on computer-related technostress: A social cognitive theory perspective. International Journal of Human–Computer Interaction, 27(10), 923–939.
  • Srivastava, S.C., Chandra, S. & Shirish, A. (2015). Technostress creators and job outcomes: theorising the moderating influence of personality traits. Information Systems Journal, 25(4), 355–401.
  • Syvanen, A., Makiniemi, J. P., Syrja, S., Heikkila-Tammi, K. &Viteli, J. (2016). When does the educational use of ICT become a source of technostress for Finnish teachers? In Seminar. Net: Media, Technology & Life-Long Learning, 12(2), 95-109.
  • Tams, S., Thatcher, J.B. & Grover, V. (2018). Concentration, competence, confidence, and capture: An experimental study of age, interruption-based technostress, and task performance. Journal of the Association for Information Systems, 19(9), 857-908.
  • Tarafdar, M., Pullins, E.B. & Ragu-Nathan, T.S. (2015). Technostress: negative effect on performance and possible mitigations. Information Systems Journal, 35, 103–132.
  • Tarafdar, M., Tu, Q. & Ragu-Nathan, T. S. (2010). Impact of Technostress on end-user satisfaction and performance. Journal of Management Information Systems, 27(3), 303-334, DOI: 10.2753/MIS0742-1222270311.
  • Tarafdar, M., Tu, Q., Ragu-Nathan, B.S. & Ragu-Nathan, T.S. (2007). The impact of technostress on role stress and productivity. Journal of Management Information Systems, 24(1), 301-328, DOI: 10.2753/MIS0742-1222240109
  • Tarafdar, M., Tu, Q., Ragu-Nathan, T.S. & Ragu-Nathan, B.S. (2011). Crossing to the Dark Side: Examining creators, outcomes, and ınhibitors of technostress. Communications of the ACM, 54(9), 113-120.
  • Tarhini, A., Scott, M., Sharma, S. & Abbasi, M. (2015). Differences in intention to use educational RSS feeds between Lebanese and British students: A multi-group analysis based on the Technology Acceptance Model. The Electronic Journal of e-Learning, 13(1), 14-29.
  • Teo, T. (2011). Technology Acceptance in Education. Published by: Sense Publishers, P.O. Box 21858, 3001 AW Rotterdam, Netherlands.
  • Tu, Q., Wang, K. L. & Shu, Q. (2005). Computer-related technostress in China. Communications of the ACM, 48(4), 77–81.
  • Tubaishat, A. (2018). Perceived usefulness and perceived ease of use of electronic health records among nurses: Application of Technology Acceptance Model. Informatics for Health and Social Care, 43(4), 379-389, DOI: 10.1080/17538157.2017.1363761.
  • Tunç, H., Bozkurt, Ö. & Gürbüz, H. (2018). Banka çalışanlarının bilgi teknolojileri kullanımının Teknoloji Kabul Modeli (TKM) ile incelenmesi. Bankacılık ve Sermaye Piyasası Araştırmaları, 2(6), 28-42.
  • Türen, U., Erdem, H. & Kalkın, G. (2015). İşyerinde Tekno-Stres Ölçeği: Havacılık ve bankacılık sektöründe bir araştırma. Çalışma İlişkileri Dergisi, 6(1), 1-19.
  • Uğur, N.G. & Turan, A.H. (2016). Mobil Uygulama Kabul Modeli: Bir ölçek geliştirme çalışması. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 34(4), 97-126.
  • Ursavaş, Ö.F., Şahin, S. & McIlroy, D. (2014). Technology acceptance measure for teachers: T-TAM. Eğitimde Kuram ve Uygulama, 10(4), 885-917.
  • Usluel, Y.K. & Mazman, S.G. (2010). Eğitimde yeniliklerin yayılımı, kabulü ve benimsenmesi sürecinde yer alan öğeler: Bir içerik analizi çalışması. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 3(39), 60-74.
  • Usta, E., Bozdoğan, A.E. & Yıldırım, K. (2007). Sınıf öğretmeni adaylarının internet kullanımına ilişkin tutumlarının değerlendirilmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 8(1), 209-222.
  • Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365
  • Venkatesh, V. & Morris, M.G. (2000). Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 24(1), 115–139.
  • Voakes, P.S., Beam, R.A. & Ogan, C. (2003). The impact of technological change on journalism education: A survey of faculty and administrators. Journalism and Mass Communication Educator, 57(4), 318-334.
  • Wallace, L.G. & Sheetz, S.D. (2014). The adoption of software measures: A technology acceptance model (TAM) perspective. Information & Management, 51, 249–259.
  • Wang, K., Shu, Q. & Tu, Q. (2008). Technostress under different organizational environments: An empirical investigation. Computers in Human Behavior, 24(6), 3002-3013.
  • Yılmaz, Ö. (2018). Tüketicilerin online alışveriş niyetlerinin Teknoloji Kabul Modeli bağlamında incelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 20(3), 331-346.
  • Yuvaraj, M. & Singh, A.K. (2015). Effects and measures of technostress among librarians in selected University libraries of Delhi. Library Philosophy and Practice, 1, 1-11.
  • Zhu, C. (2015). Organisational culture and technology-enhanced innovation in higher education. Technology, Pedagogy and Education, 24(1), 65–79.

Öğretim Elemanlarının Bilgi ve İletişim Teknolojilerine Yönelik Kabulleri ve Teknostres Algıları Arasındaki İlişkinin İncelenmesi

Year 2019, Volume: 9 Issue: 2, 40 - 66, 09.10.2019

Abstract

Çalışmanın amacı, öğretim elemanlarının bilgi ve iletişim teknolojilerine yönelik
kabulleri ve teknostres algılarının çeşitli değişkenlere göre incelenmesidir.
Çalışmada verilerin toplanması amacıyla “Teknoloji Kabul Ölçeği” ve “Teknostres
Ölçeği” kullanılmıştır. Çalışma bir devlet üniversitesinde görev yapmakta olan
ve farklı akademik programlarda görev yapan toplam 180 öğretim elemanı ile
gerçekleştirilmiştir. Verilerin çözümlenmesinde betimsel istatistikler, bağımsız
örneklem t-testi, tek-yönlü ANOVA testi ve değişkenler arasındaki ilişkinin
incelenmesi amacıyla ise Pearson korelasyon analizi kullanılmıştır. Araştırmada
öğretim elemanlarının bilgi ve iletişim teknolojilerine yönelik kabullerinin
yükseğe yakın olduğu görülürken, teknostres algılarının ise orta düzeyde olduğu
belirlenmiştir. Bununla birlikte öğretim elemanlarının bilgi ve iletişim
teknolojilerine yönelik kabulü ve teknostres algıları ile cinsiyet, yaş,
uzmanlık alanı ve günlük ortalama internet kullanım süresi değişkenleri
arasında anlamlı farklılık bulunmuştur. Çalışmada ayrıca, elde edilen bulgular öğretim
elemanlarının bilgi ve iletişim teknolojilerine yönelik kabulleri ve teknostres
algıları arasında negatif yönde ve orta düzeyde bir ilişki olduğunu ortaya
koymuştur.

References

  • Agarwal, R. & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361-391.
  • Ahmad, U.N.U., Amin, S.M. & Ismail, W.K.W. (2009). The impact of technostress on organisational commitment among Malaysian academic librarians. Singapore Journal of Library and Information Management, 38, 103- 123.
  • Akman, I. & Mishra, A. (2015). Sector diversity in Green information technology practices: Technology Acceptance Model perspective. Computers in Human Behavior, 49, 477–486.
  • Alkaya, A. & Şahin, F. (2018). Bilgi paylaşımının Teknoloji Kabul Modeli üzerinden incelenmesi; Bir sosyal ağ uygulaması. Uşak Üniversitesi Sosyal Bilimler Dergisi, 11(Özel sayı), 11-21.
  • Arnetz,B. B. & Berg, M. (1999). Melatonin and adrenocorticotropic hormone levels in video display unit workers during work and leisure. Journal of Occupational Environmental Medicine, 38, 1108–1110.
  • Arnetz, B.B. & Wiholm, C. (1997). Technological stress: psychophysiological symptoms in modern offices. Journal of Psychosomatic Research, 43(1), 35–42.
  • Avcu Yücel, Ü. & Gülbahar, Y. (2013). Technology Acceptance Model: A Review of the prior predictors. Ankara University Journal of Faculty of Educational Sciences, 46(1), 89-109.
  • Avcu, D.Ü. & Gökdaş, İ. (2012). İlköğretim ikinci kademe öğretmenlerinin bilgi ve iletişim teknolojilerine ilişkin kabul ve kullanım niyetleri. Adnan Menderes Üniversitesi Eğitim Fakültesi Dergisi, 3(1), 42-59.
  • Ayyagari, R., Grover, V. & Purvis, R. (2011). Technostress: technological antecedents and implications. MIS Quarterly, 35(4), 831–858.
  • Bağlıbel, M., Samancıoğlu, M. & Summak, S. (2010). Okul yöneticileri tarafından e-okul uygulamasının Genişletilmiş Teknoloji Kabul Modeline göre değerlendirilmesi. Mustafa Kemal University Journal of Social Sciences Institute, 7(13), 331 – 348.
  • Baran, B., & Ata, F. (2013). Üniversite öğrencilerinin Web 2.0 teknolojileri kullanma durumları, beceri düzeyleri ve eğitsel olarak faydalanma durumları. Eğitim ve Bilim, 38(169), 192-208.
  • Bitchteler, J. (1987). Technostress in libraries: Causes, effects and solutions. The Electronic Library, 5(5), 282-287.
  • Bolat, Y.İ., Aydemir, M. & Karaman, S. (2017). Uzaktan eğitim öğrencilerinin öğretimsel etkinliklerde mobil internet kullanımlarının teknoloji kabul modeline göre incelenmesi. GEFAD/GUJGEF, 37(1), 63-91
  • Brillhart, P.E. (2004). Technostress in the workplace: Managing stress in the electronic workplace. Journal of American Academy of Business, 5(1/2), 302–307.
  • Brod, C. (1984). Technostress: The human cost of the computer revolution. Reading, MA: Addison-Wesley.
  • Burke, M.A.S. (2005). Technological stressors of Louisiana baccalaureate nurse educators. Doctoral dissertation. Louisiana State University.
  • Bülbül, T. & Çuhadar, C. (2012) Okul yöneticilerinin teknoloji liderliği öz-yeterlik algıları ile bilgi ve iletişim teknolojilerine yönelik kabulleri arasındaki ilişkinin incelenmesi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 23, 474 - 499.
  • Califf, C.B., Sarker, S., Sarker, S. & Fitzgerald, C. (2015). The bright and dark sides of technostress: An empirical study of healthcare workers. In Thirty Sixth International Conference on Information Systems, Fort Worth, 1-12.
  • Chatzoglou, P.D., Sarigiannidis, L., Vraimaki, E. & Diamantidis, A. (2009). Investigating Greek employees' intention to use web-based training. Computers and Education, 53(3), 877-889.
  • Cheng, C.I., Chen, S.C. & Yen, D.C. (2015). Continuance intention of E-portfolio system: A confirmatory and multigroup invariance analysis of Technology Acceptance Model. Computer Standards & Interfaces, 42, 17–23.
  • Cheung, C.M.K. & Lee, M.K.O. (2011). Exploring the gender differences in student acceptance of an internet-based learning medium. Technology Acceptance in Education. Published by: Sense Publishers, P.O. Box 21858, 3001 AW Rotterdam, Netherlands.
  • Chuttur M.Y. (2009). Overview of the Technology Acceptance Model: Origins, developments and future directions, Indiana University, USA. Sprouts: Working Papers on Information Systems, 9(37).
  • Coffin, R. J., & MacIntyre, P.D. (1999). Motivational influences on computer-related affective states. Computer in Human Behavior, 15 , 549–569. http://dx.doi.org/ 10.1016/S0747-5632(99)00036-9
  • Çetin, D. & Bülbül, T. (2017). Okul yöneticilerinin teknostres algıları ile bireysel yenilikçilik özellikleri arasındaki ilişkinin incelenmesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(3), 1241-1264.
  • Çoklar, A.N., Efilti, E. & Sahin, L. (2017). Defining teachers' technostress levels: A scale development. Online Submission, 8(21), 28-41.
  • Çoklar, A.N., Efilti, E. & Şahin, Y.L. (2016). Investigation of techno-stress levels of teachers who were included in technology integration processes. TOJET: The Turkish Online Journal of Educational Technology, Special Issue for INTE 2016, 1331-1339.
  • Çoklar, A.N. & Şahin, Y.L. (2011). Technostress levels of social network users based on ICTs in Turkey. European Journal of Social Science, 23(2), 171–182.
  • Çubukçu, Z., Tosuntaş, Ş.B. & Kırcaburun, K. (2017). Investigation of pre-service teachers' opinions toward mobile technologies within the frame of Technology Acceptance Model. Asya Öğretim Dergisi, 5(2), 1-18.
  • Davis, F. (1985). A technology acceptance model for empirically testing new end-user information systems: theory and results. Unpublished Doctoral dissertation, MIT Sloan School of Management, Cambridge, MA.
  • Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. www.jstor.org
  • Dumpit, D.Z. & Fernandez, C.J. (2017). Analysis of the use of social media in higher Education Institutions (HEIs) using the Technology Acceptance Model. International Journal of Educational Technology in Higher Education, 14(5), 1-16.
  • Evans, E.M.W. (2013). Understanding productivity and technostress for oncology nurses using an electronic health record (EHR) to increase safety, quality, and effectiveness of care for patients with cancer. Doctoral dissertation. Capella University.
  • Fathema, N., Shannon, D. & Ross, M. (2015). Expanding the Technology Acceptance Model (TAM) to examine faculty use of Learning Management Systems (LMSs) in higher education institutions. MERLOT Journal of Online Learning and Teaching, 11(2).
  • Fischer, T. & Riedl, R. (2017). Technostress research: A nurturing ground for measurement pluralism? Communications of the Association for Information Systems, 40(17), 375-401.
  • Fischer, T. & Riedl, R. (2015). The status quo of neurophysiology in organizational technostress research: A Review of Studies Published from 1978 to 2015. In: Davis, F.D., Riedl, R., Vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience, 10, 9–17. Springer International Publishing, Cham.
  • Frankel, J.R. & Wallen, N.E. (2006). How to design and evaluate research in education. New York: McGrawHill.
  • Furniss, R.D. (2014). Technostress effect on task productivity in radiologic healthcare. Doctoral dissertation. Capella University.
  • Güldal, H. (2014). Bulut tabanlı bir ders yönetim sistemi yazılımının geliştirilmesine dayalı olarak öğretim elemanı ve öğrencilerin teknoloji kabullerinin incelenmesi. Doktora Tezi. Trakya Üniversitesi.
  • Hardy, J.V. (1999). Teacher attitudes toward and knowledge of computer technology. Computers in the Schools, 14(3-4), 119-136, DOI: 10.1300/J025v14n03_11
  • Huffman, A.H., Whetten, J. & Huffman, W.H. (2013). Using technology in higher education: The influence of gender roles on technology self-efficacy. Computers in Human Behavior, 29(4), 1779–1786. doi:10.1016/j.chb.2013.02.012
  • Igbaria, M. & Parasuraman, S. (1989). A path analytic study of individual characteristics, computer anxiety and attitudes toward microcomputers. Journal of Management, 15(3), 373–388.
  • Ilgaz, G., Özgür, H. & Çuhadar, C. (2016). The Adaptation of Technostress Scale into Turkish. Abstracts of the 11th International Balkan Education and Science Congress, (p.69), Poreč, Croatia.
  • Iqbal, S. & Bhatti, Z.A. (2015). An investigation of university student readiness towards M-learning using Technology Acceptance Model. International Review of Research in Open and Distributed Learning, 16(4).
  • Jena, R.K. (2015). Technostress in ICT enabled collaborative learning environment: An empirical study among Indian academician. Computers in Human Behavior, 51, 1116-1123.
  • Joo, Y.J., Lim, K.Y. & Kim, N.H. (2016). The effects of secondary teachers’ technostress on the intention to use technology in South Korea. Computers & Education, 95, 114-122.
  • Kalyoncuoğlu, S. (2018). Tüketicilerin online alışverişlerindeki sanal kart kullanımlarının Teknoloji Kabul Modeli ile incelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 20(2), 193-213.
  • Karasar, N. (2008). Bilimsel araştırma yöntemi: kavramlar, ilkeler, teknikler (Onsekizinci baskı). Ankara: Nobel Yayın Dağıtım.
  • Khanh, N. T. V. & Gim, G. (2014). Factors influencing mobile-learning adoption intention: An empirical investigation in high education. Journal of Social Sciences. 10(2):51-62. http://dx.doi.org/10.3844/jssp.2014.51.62.
  • Hsiao, K.L. (2017). Compulsive mobile application usage and technostress: the role of personality traits. Online Information Review, 41(2), 272-295. https://doi.org/10.1108/OIR-03-2016-0091
  • King, W.R. & He, J. (2006). A meta-analysis of The Technology Acceptance Model. Information & Management, 43, 740–755.
  • Krishnan, S. (2017). Personality and espoused cultural differences in technostress creators. Computers in Human Behavior, 66, 154-167.
  • Legris, P., Ingham, J. & Collerette, P. (2003). Why do people use information technology? A critical review of The Technology Acceptance Model. Information and Management, 40(3), 191-204.
  • Longman, S.M.D. (2013). A comparison of the perceptions of technostress experienced by teachers versus technology used by teachers in elementary education in a southeastern school district. Doctoral dissertation. Southeastern Louisiana University.
  • Lu, Y., Papagiannidis, S. & Alamanos, E. (2019). Exploring the emotional antecedents and outcomes of technology acceptance. Computers in Human Behavior, 90, 153–169.
  • Luan, W.S. & Teo, T. (2011). Student teachers’ acceptance of Computer Technology: An Application of the Technology Acceptance Model (TAM). Technology Acceptance in Education. Published by: Sense Publishers, P.O. Box 21858, 3001 AW Rotterdam, Netherlands.
  • Mahalakshmi, K. & Sornam, S.A. (2011). Ergonomics and techno stress among library professionals of engineering colleges of Anna University. Singapore Journal of Library & Information Management, 40, 89-102.
  • Maican, C.I., Cazan, A.M., Lixandroiu, R.C. & Dovleac, L. (2019). A study on academic staff personality and technology acceptance: The case of communication and collaboration applications. Computers & Education, 128, 113–131.
  • Marchiori, D.M., Mainardes, E.W. & Rodrigues, R.G. (2018). Do ındividual characteristics influence the types of Technostress reported by workers? International Journal of Human–Computer Interaction, 35(3), 218-230. DOI: 10.1080/10447318.2018.1449713
  • Mikkelsen, A., Ogaard, T., Lindoe, P.H. & Olsen, O.E. (2002). Job characteristics and computer anxiety in the production industry. Computers in Human Behavior, 18(3), 223–239. doi:10.1016/S0747- 5632(01)00051-6
  • Morris, M.G. & Venkatesh, V. (2000). Age differences in technology adoption decisions: Implications for a changing work force. Personel Psychology, 53(2), 375–403.
  • Orhan Göksun, D. (2016). Teknostresin eğitim alanına yönelik örtük moderatörleri. IV. International Instructional Technologies & Teacher Education Symposium, Fırat University, Elazığ/Turkey, 6-8 October, 189-194.
  • Özer, G., Günlük, M. & Özcan, M. (2019). Muhasebe akademisyenlerinin muhasebe eğitiminde uzaktan eğitim uygulamaları kullanımına yönelik algılarının Teknoloji Kabul Modeli çerçevesinde incelenmesi. Muhasebe ve Vergi Uygulamaları Dergisi, 12(1), 65-90.
  • Park, S.Y. (2009). An analysis of the Technology Acceptance Model in understanding university students’ behavioral intention to use e-Learning. Educational Technology & Society, 12(3), 150–162.
  • Persico, D., Manca, S. & Pozzi, F. (2014). Adapting the Technology Acceptance Model to evaluate the innovative otential of e-learning systems. Computers in Human Behavior, 30, 614–622.
  • Porter, E.C. & Donthu, N. (2006). Using the Technology Acceptance model to explain how attitudes determine internet usage: The role of perceived access barriers and demographics. Science Direct, Journal of Business Research, 59, 999–1007.
  • Ragu-Nathan, T.S., Tarafdar, M., Ragu-Nathan, B.S. & Tu, Q. (2008). The consequences of technostress for end users in organizations: Conceptual development and empirical validation. Information Systems Research, 19(4), 417–433.
  • Salanova, M., Llorens, S. & Cifre, E. (2013) The dark side of technologies: Technostress among users of information and communication technologies. International Journal of Psychology, 48(3), 422-436, DOI: 10.1080/00207594.2012.680460.
  • Salo, M., Pirkkalainen, H. & Koskelainen, T. (2018). Technostress and social networking services: Explaining users’ concentration, sleep, identity, and social relation problems. Information Systems Journal, 1-28.
  • Sanchez-Franco, M.J. (2006) Exploring the influence of gender on the web usage via partial least square. Behaviour & Information Technology, 25(1), 19-36.
  • Sanderlin, T.K. (2004). Managing Technostress in the organizational environment: Symptoms and solutions. Annals of the American Psychotherapy Association, 7, 26-32.
  • Scherer, R., Siddiq, F. & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35.
  • Schoonenboom, J. (2014). Using an adapted, task-level technology acceptance model to explain why instructors in higher education intend to use some learning management system tools more than others. Computers & Education, 71, 247–256.
  • Shen, C.X., Liu, R.D. & Wang, D. (2013). Why are children attracted to the Internet? The role of need satisfaction perceived online and perceived in daily real life. Computers in Human Behavior, 29(1), 185–192.
  • Shu, Q., Tu, Q., & Wang, K. (2011). The impact of computer self-efficacy and technology dependence on computer-related technostress: A social cognitive theory perspective. International Journal of Human–Computer Interaction, 27(10), 923–939.
  • Srivastava, S.C., Chandra, S. & Shirish, A. (2015). Technostress creators and job outcomes: theorising the moderating influence of personality traits. Information Systems Journal, 25(4), 355–401.
  • Syvanen, A., Makiniemi, J. P., Syrja, S., Heikkila-Tammi, K. &Viteli, J. (2016). When does the educational use of ICT become a source of technostress for Finnish teachers? In Seminar. Net: Media, Technology & Life-Long Learning, 12(2), 95-109.
  • Tams, S., Thatcher, J.B. & Grover, V. (2018). Concentration, competence, confidence, and capture: An experimental study of age, interruption-based technostress, and task performance. Journal of the Association for Information Systems, 19(9), 857-908.
  • Tarafdar, M., Pullins, E.B. & Ragu-Nathan, T.S. (2015). Technostress: negative effect on performance and possible mitigations. Information Systems Journal, 35, 103–132.
  • Tarafdar, M., Tu, Q. & Ragu-Nathan, T. S. (2010). Impact of Technostress on end-user satisfaction and performance. Journal of Management Information Systems, 27(3), 303-334, DOI: 10.2753/MIS0742-1222270311.
  • Tarafdar, M., Tu, Q., Ragu-Nathan, B.S. & Ragu-Nathan, T.S. (2007). The impact of technostress on role stress and productivity. Journal of Management Information Systems, 24(1), 301-328, DOI: 10.2753/MIS0742-1222240109
  • Tarafdar, M., Tu, Q., Ragu-Nathan, T.S. & Ragu-Nathan, B.S. (2011). Crossing to the Dark Side: Examining creators, outcomes, and ınhibitors of technostress. Communications of the ACM, 54(9), 113-120.
  • Tarhini, A., Scott, M., Sharma, S. & Abbasi, M. (2015). Differences in intention to use educational RSS feeds between Lebanese and British students: A multi-group analysis based on the Technology Acceptance Model. The Electronic Journal of e-Learning, 13(1), 14-29.
  • Teo, T. (2011). Technology Acceptance in Education. Published by: Sense Publishers, P.O. Box 21858, 3001 AW Rotterdam, Netherlands.
  • Tu, Q., Wang, K. L. & Shu, Q. (2005). Computer-related technostress in China. Communications of the ACM, 48(4), 77–81.
  • Tubaishat, A. (2018). Perceived usefulness and perceived ease of use of electronic health records among nurses: Application of Technology Acceptance Model. Informatics for Health and Social Care, 43(4), 379-389, DOI: 10.1080/17538157.2017.1363761.
  • Tunç, H., Bozkurt, Ö. & Gürbüz, H. (2018). Banka çalışanlarının bilgi teknolojileri kullanımının Teknoloji Kabul Modeli (TKM) ile incelenmesi. Bankacılık ve Sermaye Piyasası Araştırmaları, 2(6), 28-42.
  • Türen, U., Erdem, H. & Kalkın, G. (2015). İşyerinde Tekno-Stres Ölçeği: Havacılık ve bankacılık sektöründe bir araştırma. Çalışma İlişkileri Dergisi, 6(1), 1-19.
  • Uğur, N.G. & Turan, A.H. (2016). Mobil Uygulama Kabul Modeli: Bir ölçek geliştirme çalışması. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 34(4), 97-126.
  • Ursavaş, Ö.F., Şahin, S. & McIlroy, D. (2014). Technology acceptance measure for teachers: T-TAM. Eğitimde Kuram ve Uygulama, 10(4), 885-917.
  • Usluel, Y.K. & Mazman, S.G. (2010). Eğitimde yeniliklerin yayılımı, kabulü ve benimsenmesi sürecinde yer alan öğeler: Bir içerik analizi çalışması. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 3(39), 60-74.
  • Usta, E., Bozdoğan, A.E. & Yıldırım, K. (2007). Sınıf öğretmeni adaylarının internet kullanımına ilişkin tutumlarının değerlendirilmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 8(1), 209-222.
  • Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365
  • Venkatesh, V. & Morris, M.G. (2000). Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 24(1), 115–139.
  • Voakes, P.S., Beam, R.A. & Ogan, C. (2003). The impact of technological change on journalism education: A survey of faculty and administrators. Journalism and Mass Communication Educator, 57(4), 318-334.
  • Wallace, L.G. & Sheetz, S.D. (2014). The adoption of software measures: A technology acceptance model (TAM) perspective. Information & Management, 51, 249–259.
  • Wang, K., Shu, Q. & Tu, Q. (2008). Technostress under different organizational environments: An empirical investigation. Computers in Human Behavior, 24(6), 3002-3013.
  • Yılmaz, Ö. (2018). Tüketicilerin online alışveriş niyetlerinin Teknoloji Kabul Modeli bağlamında incelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 20(3), 331-346.
  • Yuvaraj, M. & Singh, A.K. (2015). Effects and measures of technostress among librarians in selected University libraries of Delhi. Library Philosophy and Practice, 1, 1-11.
  • Zhu, C. (2015). Organisational culture and technology-enhanced innovation in higher education. Technology, Pedagogy and Education, 24(1), 65–79.
There are 99 citations in total.

Details

Primary Language Turkish
Subjects Studies on Education
Journal Section Research Article
Authors

Fatma Akgün

Publication Date October 9, 2019
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Akgün, F. (2019). Öğretim Elemanlarının Bilgi ve İletişim Teknolojilerine Yönelik Kabulleri ve Teknostres Algıları Arasındaki İlişkinin İncelenmesi. Eğitim Bilimleri Araştırmaları Dergisi, 9(2), 40-66.
AMA Akgün F. Öğretim Elemanlarının Bilgi ve İletişim Teknolojilerine Yönelik Kabulleri ve Teknostres Algıları Arasındaki İlişkinin İncelenmesi. EBAD - JESR. October 2019;9(2):40-66.
Chicago Akgün, Fatma. “Öğretim Elemanlarının Bilgi Ve İletişim Teknolojilerine Yönelik Kabulleri Ve Teknostres Algıları Arasındaki İlişkinin İncelenmesi”. Eğitim Bilimleri Araştırmaları Dergisi 9, no. 2 (October 2019): 40-66.
EndNote Akgün F (October 1, 2019) Öğretim Elemanlarının Bilgi ve İletişim Teknolojilerine Yönelik Kabulleri ve Teknostres Algıları Arasındaki İlişkinin İncelenmesi. Eğitim Bilimleri Araştırmaları Dergisi 9 2 40–66.
IEEE F. Akgün, “Öğretim Elemanlarının Bilgi ve İletişim Teknolojilerine Yönelik Kabulleri ve Teknostres Algıları Arasındaki İlişkinin İncelenmesi”, EBAD - JESR, vol. 9, no. 2, pp. 40–66, 2019.
ISNAD Akgün, Fatma. “Öğretim Elemanlarının Bilgi Ve İletişim Teknolojilerine Yönelik Kabulleri Ve Teknostres Algıları Arasındaki İlişkinin İncelenmesi”. Eğitim Bilimleri Araştırmaları Dergisi 9/2 (October 2019), 40-66.
JAMA Akgün F. Öğretim Elemanlarının Bilgi ve İletişim Teknolojilerine Yönelik Kabulleri ve Teknostres Algıları Arasındaki İlişkinin İncelenmesi. EBAD - JESR. 2019;9:40–66.
MLA Akgün, Fatma. “Öğretim Elemanlarının Bilgi Ve İletişim Teknolojilerine Yönelik Kabulleri Ve Teknostres Algıları Arasındaki İlişkinin İncelenmesi”. Eğitim Bilimleri Araştırmaları Dergisi, vol. 9, no. 2, 2019, pp. 40-66.
Vancouver Akgün F. Öğretim Elemanlarının Bilgi ve İletişim Teknolojilerine Yönelik Kabulleri ve Teknostres Algıları Arasındaki İlişkinin İncelenmesi. EBAD - JESR. 2019;9(2):40-66.