Year 2023,
Volume: 10 Issue: 3, 586 - 599, 30.09.2023
Islam Islamov
,
Agarahim Rahimov
,
Murad Jahangirov
,
Namiq Shukurov
,
Rashid Abdullayev
References
- [1]. G. Kerim, and B. Suad, “A quantized water cycle optimization algorithm for antenna array synthesis by using digital phase shifters,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 25, no. 1, pp. 21-29, 2015.
- [2]. H. I. Taisir, and M. H. Zoubir, “Array Pattern Synthesis Using Digital Phase Control by Quantized Particle Swarm Optimization,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 6, pp. 2142-2145, 2010.
- [3]. P. David, O. Tamas, C. D. G. Deubauh, and K. N. Hamid, “Performance Comparison of Quantized Control Synthesis Methods of Antenna Arrays,” Electronics, vol. 1, no. 7, pp. 994-102, 2022.
- [4]. S.-T. Sheu, J.-S. Wu, C.-H. Huang, Y.-C. Cheng, and L. Chen, “DDAS: Distance and Direction Awareness System for Intelligent Vehicles,” Journal of Information Science and Engineering, vol. 23, pp. 709-722, 2007.
- [5]. S. Liang, T. Feng, and G. Sun, “Sidelobe-level suppression for linear and circular antenna arrays via the cuckoo search-chicken swarm optimisation algorithm,” IET Microw. Antennas Propag., vol. 11, pp. 209-218, 2017.
- [6]. H. Singh, B. S. Sohi, and A. Gupta, “Designing and performance evaluation of metamaterial inspired antenna for 4G and 5G applications,” Int. J. Electron., vol. 108, pp. 1035-1057, 2021.
- [7]. H. Singh, N. Mittal, U. Singh, and R. Salgotra, “Synthesis of non-uniform circular antenna array for low side lobe level and high directivity using self-adaptive Cuckoo search algorithm,” Arab. J. Sci. Eng., vol. 47, pp. 3105-3118, 2022.
- [8]. G. Yang, Y. Zhang, and S. Zhang, “Wide-band and wide-angle scanning phased array antenna for mobile communication system,” IEEE Open J. Antennas Propag., vol. 2, pp. 203-212, 2021.
- [9]. R. Q. Wang, and Y. C. Jiao, “Synthesis of wideband rotationally symmetric sparse circular arrays with multiple constraints,” IEEE Antennas Wirel. Propag. Lett., vol. 18, pp. 821-825, 2019.
- [10]. L. Hui, C. Yikai, and J. Ulrich, “Synthesis, Control, and Excitation of Characteristic Modes for Platform-Integrated Antenna Designs: A design philosophy,” IEEE Antennas and Propagation Magazine, vol. 64, no. 2, pp. 41-48, 2022.
- [11]. R. Castillo, R. Ma, and N. Behdad, “Platform-based electrically-small HF antenna with switchable directional radiation patterns,” IEEE Trans. Antennas Propag., vol. 69, no. 8, pp. 4370-4379, 2021.
- [12]. Y. Liu, J. Zhang, A. Ren, H. Wang, and C. Sim, “TCM-based heptaband antenna with small clearance for metal-rimmed mobile phone applications,” IEEE Antennas and Wireless Propag. Lett., vol. 18, no. 4, pp. 717-721, 2019.
- [13]. I. J. Islamov, E. G. Ismibayli, Y. G. Gaziyev, S. R. Ahmadova, and R. S. Abdullayev, “Modeling of the Electromagnetic Feld of a Rectangular Waveguide with Side Holes,” Progress in Electromagnetics Research, vol. 81, pp. 127-132, 2019.
- [14]. I. J. Islamov, N. M. Shukurov, R. S. Abdullayev, K. K. Hashimov, and A. I. Khalilov, “Diffraction of Electromagnetic Waves of Rectangular Waveguides with a Longitudinal,” Application in Information and Telecommunication Systems, pp. 35-46Ş 2020.
- [15]. A. I. Khalilov, I. J. Islamov, E. Z. Hunbataliyev, N. M. Shukurov, and R. S. Abdullayev, “Modeling Microwave Signals Transmitted Through a Rectangular Waveguide,” Application in Information and Telecommunication Systems, pp. 56-67, 2020.
- [16]. I. J. Islamov, and E. G. Ismibayli, “Experimental Study of Characteristics of Microwave Devices Transition from Rectangular Waveguide to the Megaphone,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 477-479, 2018.
- [17]. E. G. Ismibayli, and I. J. Islamov, “New Approach to Definition of Potential of the Electric Field Created by Set Distribution in Space of Electric Charges,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 410-414, 2018.
- [18]. I. J. Islamov, E. G. Ismibayli, M. H. Hasanov, Y. G. Gaziyev, S. R. Ahmadova, and R. S. Abdullayev, “Calculation of the Electromagnetic Field of a Rectangular Waveguide with Chiral Medium,” Progress in Electromagnetics Research, vol. 84, pp. 97-114, 2019.
- [19]. I. J. Islamov, E. Z. Hunbataliyev, and A. E. Zulfugarli, “Numerical Simulation of Characteristics of Propagation of Symmetric Waves in Microwave Circular Shielded Waveguide with a Radially Inhomogeneous Dielectric Filling,” International Journal of Microwave and Wireless Technologies, vol. 9, pp. 761-767, 2021.
- [20]. I. J. Islamov, M. H. Hasanov, and M. H. Abbasov, “Simulation of Electrodynamic Processes in a Cylindrical-Rectangular Microwave Waveguide Systems Transmitting Information,” Theory and Application of Soft Computing, Computing with Words, Perception and Artificial Intelligence, pp. 246-253, 2021.
- [21]. A. G. Charles, and Y. Guo, “A General Approach for Synthesizing Multibeam Antenna Arrays Employing Generalized Joined Coupler Matrix,” IEEE Transactions on Antennas and Propagation, vol. 256, pp. 1-10, 2022.
- [22]. A. K. Amin, “A Proposed Method for Synthesizing the Radiation Pattern of Linear Antenna Arrays,” Journal of Communications, vol. 17, no. 7, pp. 1-6, 2022.
- [23]. A. Zeeshan, U. A. J. Zain, B. Shu-Di, and C. Meng, “Comments on Frequency Diverse Array Beampattern Synthesis with Taylor Windowed Frequency Offsets,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 8, pp. 1713-1714, 2022.
- [24]. Z. Wang, Y. Song, T. Mu, and Z. Ahmad, “A short-range range-angle dependent beampattern synthesis by frequency diverse array,” IEEE Access, vol. 6, pp. 22664-22669, 2018.
- [25]. X. Shao, T. Hu, Z. Xiao, and J. Zhang, “Frequency l+ synthesis with modified sinusoidal frequency offset,” IEEE Antennas Wireless Propag. Lett., vol. 20, no. 9, pp. 1784-1788, 2021.
- [26]. R. Quanxin, Q. Bingyi, C. Xiaoming, H. Xiaoyu, L. Qinlong, and Z. Jiaying, “Linear Antenna Array with Large Element Spacing for Wide-Angle Beam Scanning with Suppressed Grating Lobes,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 6, pp. 1258-1262, 2022.
- [27]. G. Yang, Y. Zhang, and S. Zhang, “Wide-band and wide-angle scanning phased array antenna for mobile communication system,” IEEE Open J. Antennas Propag., vol. 2, pp. 203-212, 2021.
- [28]. Y.-F. Cheng, X. Ding, W. Shao, M.-X. Yu, and B.-Z. Wang, “A novel wide-angle scanning phased array based on dual-mode pattern reconfigurable elements”, IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 396-399, 2017.
- [29]. J. Zhang, X. Cui, H. Xu, S. Zhao, and M. Lu, “Efficient Signal Separation Method Based on Antenna Arrays for GNSS Meaconing,” Tsinghua Science and Technology, vol. 24, no. 2, pp. 216-225, 2019.
Development of a Technique for Increasing the Directivity of an Antenna Array in the Microwave Range
Year 2023,
Volume: 10 Issue: 3, 586 - 599, 30.09.2023
Islam Islamov
,
Agarahim Rahimov
,
Murad Jahangirov
,
Namiq Shukurov
,
Rashid Abdullayev
Abstract
The paper proposes and tests an effective method for improving the directivity of diffraction-type leaky-wave antennas based on the implementation of a longitudinal change in the profile of the distribution-radiating system due to the variation of the aiming distance according to a given amplitude distribution. It has been established that changing the aiming distance along the aperture according to a theoretically calculated regularity makes it possible to improve the initial directional properties of the antenna: to reduce the maximum level of side lobes, and also to increase the antenna gain.
References
- [1]. G. Kerim, and B. Suad, “A quantized water cycle optimization algorithm for antenna array synthesis by using digital phase shifters,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 25, no. 1, pp. 21-29, 2015.
- [2]. H. I. Taisir, and M. H. Zoubir, “Array Pattern Synthesis Using Digital Phase Control by Quantized Particle Swarm Optimization,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 6, pp. 2142-2145, 2010.
- [3]. P. David, O. Tamas, C. D. G. Deubauh, and K. N. Hamid, “Performance Comparison of Quantized Control Synthesis Methods of Antenna Arrays,” Electronics, vol. 1, no. 7, pp. 994-102, 2022.
- [4]. S.-T. Sheu, J.-S. Wu, C.-H. Huang, Y.-C. Cheng, and L. Chen, “DDAS: Distance and Direction Awareness System for Intelligent Vehicles,” Journal of Information Science and Engineering, vol. 23, pp. 709-722, 2007.
- [5]. S. Liang, T. Feng, and G. Sun, “Sidelobe-level suppression for linear and circular antenna arrays via the cuckoo search-chicken swarm optimisation algorithm,” IET Microw. Antennas Propag., vol. 11, pp. 209-218, 2017.
- [6]. H. Singh, B. S. Sohi, and A. Gupta, “Designing and performance evaluation of metamaterial inspired antenna for 4G and 5G applications,” Int. J. Electron., vol. 108, pp. 1035-1057, 2021.
- [7]. H. Singh, N. Mittal, U. Singh, and R. Salgotra, “Synthesis of non-uniform circular antenna array for low side lobe level and high directivity using self-adaptive Cuckoo search algorithm,” Arab. J. Sci. Eng., vol. 47, pp. 3105-3118, 2022.
- [8]. G. Yang, Y. Zhang, and S. Zhang, “Wide-band and wide-angle scanning phased array antenna for mobile communication system,” IEEE Open J. Antennas Propag., vol. 2, pp. 203-212, 2021.
- [9]. R. Q. Wang, and Y. C. Jiao, “Synthesis of wideband rotationally symmetric sparse circular arrays with multiple constraints,” IEEE Antennas Wirel. Propag. Lett., vol. 18, pp. 821-825, 2019.
- [10]. L. Hui, C. Yikai, and J. Ulrich, “Synthesis, Control, and Excitation of Characteristic Modes for Platform-Integrated Antenna Designs: A design philosophy,” IEEE Antennas and Propagation Magazine, vol. 64, no. 2, pp. 41-48, 2022.
- [11]. R. Castillo, R. Ma, and N. Behdad, “Platform-based electrically-small HF antenna with switchable directional radiation patterns,” IEEE Trans. Antennas Propag., vol. 69, no. 8, pp. 4370-4379, 2021.
- [12]. Y. Liu, J. Zhang, A. Ren, H. Wang, and C. Sim, “TCM-based heptaband antenna with small clearance for metal-rimmed mobile phone applications,” IEEE Antennas and Wireless Propag. Lett., vol. 18, no. 4, pp. 717-721, 2019.
- [13]. I. J. Islamov, E. G. Ismibayli, Y. G. Gaziyev, S. R. Ahmadova, and R. S. Abdullayev, “Modeling of the Electromagnetic Feld of a Rectangular Waveguide with Side Holes,” Progress in Electromagnetics Research, vol. 81, pp. 127-132, 2019.
- [14]. I. J. Islamov, N. M. Shukurov, R. S. Abdullayev, K. K. Hashimov, and A. I. Khalilov, “Diffraction of Electromagnetic Waves of Rectangular Waveguides with a Longitudinal,” Application in Information and Telecommunication Systems, pp. 35-46Ş 2020.
- [15]. A. I. Khalilov, I. J. Islamov, E. Z. Hunbataliyev, N. M. Shukurov, and R. S. Abdullayev, “Modeling Microwave Signals Transmitted Through a Rectangular Waveguide,” Application in Information and Telecommunication Systems, pp. 56-67, 2020.
- [16]. I. J. Islamov, and E. G. Ismibayli, “Experimental Study of Characteristics of Microwave Devices Transition from Rectangular Waveguide to the Megaphone,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 477-479, 2018.
- [17]. E. G. Ismibayli, and I. J. Islamov, “New Approach to Definition of Potential of the Electric Field Created by Set Distribution in Space of Electric Charges,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 410-414, 2018.
- [18]. I. J. Islamov, E. G. Ismibayli, M. H. Hasanov, Y. G. Gaziyev, S. R. Ahmadova, and R. S. Abdullayev, “Calculation of the Electromagnetic Field of a Rectangular Waveguide with Chiral Medium,” Progress in Electromagnetics Research, vol. 84, pp. 97-114, 2019.
- [19]. I. J. Islamov, E. Z. Hunbataliyev, and A. E. Zulfugarli, “Numerical Simulation of Characteristics of Propagation of Symmetric Waves in Microwave Circular Shielded Waveguide with a Radially Inhomogeneous Dielectric Filling,” International Journal of Microwave and Wireless Technologies, vol. 9, pp. 761-767, 2021.
- [20]. I. J. Islamov, M. H. Hasanov, and M. H. Abbasov, “Simulation of Electrodynamic Processes in a Cylindrical-Rectangular Microwave Waveguide Systems Transmitting Information,” Theory and Application of Soft Computing, Computing with Words, Perception and Artificial Intelligence, pp. 246-253, 2021.
- [21]. A. G. Charles, and Y. Guo, “A General Approach for Synthesizing Multibeam Antenna Arrays Employing Generalized Joined Coupler Matrix,” IEEE Transactions on Antennas and Propagation, vol. 256, pp. 1-10, 2022.
- [22]. A. K. Amin, “A Proposed Method for Synthesizing the Radiation Pattern of Linear Antenna Arrays,” Journal of Communications, vol. 17, no. 7, pp. 1-6, 2022.
- [23]. A. Zeeshan, U. A. J. Zain, B. Shu-Di, and C. Meng, “Comments on Frequency Diverse Array Beampattern Synthesis with Taylor Windowed Frequency Offsets,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 8, pp. 1713-1714, 2022.
- [24]. Z. Wang, Y. Song, T. Mu, and Z. Ahmad, “A short-range range-angle dependent beampattern synthesis by frequency diverse array,” IEEE Access, vol. 6, pp. 22664-22669, 2018.
- [25]. X. Shao, T. Hu, Z. Xiao, and J. Zhang, “Frequency l+ synthesis with modified sinusoidal frequency offset,” IEEE Antennas Wireless Propag. Lett., vol. 20, no. 9, pp. 1784-1788, 2021.
- [26]. R. Quanxin, Q. Bingyi, C. Xiaoming, H. Xiaoyu, L. Qinlong, and Z. Jiaying, “Linear Antenna Array with Large Element Spacing for Wide-Angle Beam Scanning with Suppressed Grating Lobes,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 6, pp. 1258-1262, 2022.
- [27]. G. Yang, Y. Zhang, and S. Zhang, “Wide-band and wide-angle scanning phased array antenna for mobile communication system,” IEEE Open J. Antennas Propag., vol. 2, pp. 203-212, 2021.
- [28]. Y.-F. Cheng, X. Ding, W. Shao, M.-X. Yu, and B.-Z. Wang, “A novel wide-angle scanning phased array based on dual-mode pattern reconfigurable elements”, IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 396-399, 2017.
- [29]. J. Zhang, X. Cui, H. Xu, S. Zhao, and M. Lu, “Efficient Signal Separation Method Based on Antenna Arrays for GNSS Meaconing,” Tsinghua Science and Technology, vol. 24, no. 2, pp. 216-225, 2019.