Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 1, 85 - 95, 30.07.2024

Abstract

References

  • Ahmad A., Ashfaq M., Rasul G., Wajid S. A., Ahmad I., Khaliq T.... & Hoogenboom G. 2023. Development of Climate Change Adaptation Strategies for Cotton–Wheat Cropping System of Punjab Pakistan. In Handbook of Climate Change And Agroecosystems: Climate Change and Farming System Planning in Africa and South Asia: AgMIP Stakeholder-driven Research, Part 2 pp. 277-327.
  • Ahmed M., Asif M., Hirani A. H., Akram M. N. & Goyal A. 2013. Modeling for agricultural sustainability: A review. Elsevier. Pp 127-147.
  • Akman H., & Topal A. 2011. General Situation and Problems of Wheat Farming in Province of Konya, Selcuk Journal of Agriculture and Food Sciences, 25(4), 47-57.
  • Alexandrov V. A. & Hoogenboom G. 2000. The impact of climate variability and change on crop yield in Bulgaria, Agricultural and forest meteorology, 104(4), 315-327.
  • Alsafadi K., Bi, S., Abdo H. G., Almohamad, H., Alatrach B., Srivastava A. K., ... & Mohammed S. 2023. Modeling the impacts of projected climate change on wheat crop suitability in semi-arid regions using the AHP-based weighted climatic suitability index and CMIP6, Geoscience Letters, 10(1), 1-21.
  • Asseng S., Ewert F., Martre P., Rötter R. P., Lobell D. B., Cammarano D., ... & Zhu Y. 2015. Rising temperatures reduce global wheat production, Nature climate change, 5(2), 143-147.
  • Balaghi R., Tychon B., Eerens H. & Jlibene M. 2008. Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco, International Journal of Applied Earth Observation and Geoinformation, 10(4), 438-452.
  • Dettori M., Cesaraccio C. & Duce P. 2017. Simulation of climate change impacts on production and phenology of durum wheat in Mediterranean environments using CERES-Wheat model, Field Crops Research, 206, 43–53.
  • Dhakal A. 2021. Effect of drought stress and management in wheat—A review, Food Agribus. Manag, 2(2), 62-66.
  • Dündar M. A. & Topak R. 2021. Evaluation of Irrigation Productivity Using Different Irrigation Strategies for Winter Wheat, Bahri Dağdaş Bitkisel Araştırma Dergisi, 10(2), 124-137.
  • Fan J., McConkey B., Wang H. & Janzen H. 2016. Root distribution by depth for temperate agricultural crops, Field Crops Research, 189, 68-74.
  • Fang Y., Xu B., Turner N. C. & Li F.-M. 2010. Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning, European Journal of Agronomy, 33(4), 257–266.
  • Farooq M., Wahid A., Kobayashi N., Fujita D. & Basra S. M. A. 2009. Plant drought stress: effects, mechanisms and management, Sustainable agriculture, 153-188.
  • Farré I., Van Oijen M., Leffelaar P. A. & Faci J. M. 2000. Analysis of maize growth for different irrigation strategies in northeastern Spain, European Journal of Agronomy, 12(3-4), 225-238.
  • Franke A.C., Haverkort A.J. & Steyn J.M. 2013. Climate change and potato production in contrasting south African agro-ecosystems 2. Assessing risks and opportunities of adaptation strategies, Potato Res, 56(1): 51-66.
  • Gouache D., Le Bris X., Bogard M., Deudon O., Pagé C. & Gate P. 2012. Evaluating agronomic adaptation options to increas- ing heat stress under climate change during wheat grain filling in France, European Journal of Agronomy, 39, 62–70.
  • Monteith J. L. 1977. Climate and the efficiency of crop production in Britain. Philosophical transactions of the royal society of London, B, Biological Sciences, 281(980), 277-294.
  • Nouri M., Homaee M., Bannayan M. & Hoogenboom G. 2017. Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change, Agricultural water management, 186, 108-119.
  • Habekotté B. 1997. Description, parameterization and user guide of LINTUL-BRASNAP 1.1: a crop growth model of winter oilseed rape (Brassica napus L.). AB-DLO. ISBN: 9789073384514
  • Haverkort A. J., Franke A. C., Engelbrecht F. A. & Steyn J. M. 2013. Climate change and potato production in contrasting South African agro-ecosystems 1. Effects on land and water use efficiencies, Potato Research, 56, 31-50.
  • Hernandez-Ochoa I. M., Asseng S., Kassie B. T., Xiong W., Robertson R., Pequeno D. N. L....& Hoogenboom G. 2018. Climate change impact on Mexico wheat production, Agricultural and Forest Meteorology, 263, 373-387.
  • Hoogendoorn J. 1985. The physiology of variation in the time of ear emergence among wheat varieties from different regions of the world. Euphytica, 34(2), 559-571.
  • IPCC 2018. Intergovernmental Panel on Climate Change Report 2018 https://www.ipcc.ch/2018/ (accesed:15 April 2023)
  • Jaleel C. A., Manivannan, P., Wahid A., Farooq M., Al-Juburi H. J., Somasundaram R. & Panneerselvam R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition, Int. J. Agric. Biol, 11(1), 100-105.
  • Kettlewell P., Byrne R. & Jeffery S. 2023. Wheat area expansion into northern higher latitudes and global food security, Agriculture, Ecosystems & Environment, 351, 108499.
  • Khan A., Ahmad M., Ahmed M. & Iftikhar Hussain M. 2020. Rising atmospheric temperature impact on wheat and thermotolerance strategies, Plants, 10(1), 43.
  • Lee H., Calvin K., Dasgupta D., Krinner G., Mukherji A., Thorne P. ... & Park Y. 2023. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
  • Lobell D. B. & Burke M. B. 2010. On the use of statistical models to predict crop yield responses to climate change, Agricultural and forest meteorology, 150(11), 1443-1452.
  • Nouri M., Homaee M., Bannayan M. & Hoogenboom G. 2017. Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change, Agricultural water management, 186, 108-119.
  • Nyombi K. 2010. Understanding growth of East Africa highland banana: experiments and simulation, Wageningen University and Research. ISBN: 978-90-8585-550-7
  • Osman R., Ata-Ul-Karim S. T., Tahir M. N., Ishaque W. & Xu M. 2022. Multi-model ensembles for assessing the impact of future climate change on rainfed wheat productivity under various cultivars and nitrogen levels, European Journal of Agronomy, 139, 126554.
  • Özensel İ. E. 2023. Evaluation of the Factors Playing an Effective Role in Farmers' Selection of Cereals for Sowing by Dematel Method: (The Case of Konya Province). MSc Thesis, KTO Karatay University, Türkiye.
  • Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R. ... & van Ypserle, J. P. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC, p. 151. Papakosta D. K., & Gagianas A. A. 1991. Nitrogen and Dry Matter Accumulation, Remobilization, and Losses for Mediterranean Wheat during Grain Filling, Agronomy Journal, 83(5), 864–870.
  • Porter J. R. & Gawith M. 1999. Temperatures and the growth and development of wheat: a review, European journal of agronomy, 10(1), 23-36.
  • Purucker S. J. 2020. Agronomic and Nutrient Management Strategies to Improve Winter Wheat and Sugarbeet Plant Growth, Yield, and Quality. Michigan State University.
  • Raihan A. 2023. A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors, Journal of Environmental Science and Economics, 2(3), 36-58.
  • Rana R. M., Rehman S. U., Ahmed J. & Bilal M. 2013. A comprehensive overview of recent advances in drought stress tolerance research in wheat (Triticum aestivum L.), Asian Journal of Agriculture and Biology, 1(1), 29–37.
  • Republic of Türkiye Ministry of Agriculture and Forestry 2017. Serin İklim Tahılları Çeşit Tescil Raporu, Tarım Ürünleri Piyasa Raporu, TEPGE. https://www.tarimorman.gov.tr/BUGEM/TTSM/Belgeler/Yay%C4%B1nlar/2017%20Faliyet/Serin%20%C4%B0klim%20Tah%C4%B1llar%C4%B1%202017%20Tescil%20Raporu.pdf (accessed 17 April 2023).
  • Republic of Turkey Ministry of Agriculture and Forestry 2023. Buğday Tarımı. https://arastirma.tarimorman.gov.tr/ktae/Belgeler/brosurler/Bu%C4%9Fday%20Tar%C4%B1m%C4%B1.pdf (accessed 18 October 2023)
  • Sandaña, P., Ramírez, M. & Pinochet, D. (2012). Radiation interception and radiation use efficiency of wheat and pea under different P availabilities. Field crops research, 127, 44-50.
  • Shibu M. E., Leffelaar P. A., Van Keulen H. & Aggarwal P. K. 2010. LINTUL3, a simulation model for nitrogen-limited situations: Application to rice, European Journal of Agronomy, 32(4), 255-271.
  • Sommer R., Glazirina M., Yuldashev T., Otarov A., Ibraeva M., Martynova L., Bekenov M., Kholov B., Ibragimov N., & Kob- ilov R. 2013. Impact of climate change on wheat productivity in Central Asia, Agriculture, Ecosystem and Environment, 178, 78–99.
  • Spitters C. J. T. & Schapendonk A. H. C. M. 1990. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation, Genetic aspects of plant mineral nutrition, 151-161.
  • Tari A. F. 2016. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions, Agricultural Water Management, 167, 1-10.
  • Tang X., Song N., Chen Z., Wang J. & He J. 2018. Estimating the potential yield and ETc of winter wheat across Huang-Huai-Hai Plain in the future with the modified DSSAT model, Scientific Reports, 8(1), 15370.
  • Taulya G. 2015. Ky’osimba Onaanya: Understanding productivity of East African highland banana. PhD thesis, Wageningen University. ISBN 9789462575615 - 167
  • Thapa S., Xue Q., Jessup K. E., Rudd J. C., Liu S., Devkota R. N. & Baker J. A. 2020. Soil water extraction and use by winter wheat cultivars under limited irrigation in a semi-arid environment, Journal of Arid Environments, 174(March), 104046.
  • TSMS. 2022. Turkish State Meteorological Service, climate data of long term period. URL: https://mgm.gov.tr (accessed 17 April 2023).
  • TÜİK 2022. Wheat yield for Konya province in 2022. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (accessed 17 November 2023).
  • Wang B., Li Liu D., Asseng S., Macadam I. & Yu Q. 2015. Impact of climate change on wheat flowering time in eastern Australia, Agricultural and Forest Meteorology, 209, 11–21.
  • Yeşilköy S. & Şaylan L. 2020. Assessment and modelling of crop yield and water footprint of winter wheat by AquaCrop, Ital J Agrometeorol, 3, 3-14.
  • Zahra N., Hafeez M. B., Wahid A., Al Masruri M. H., Ullah A., Siddique K. H. & Farooq M. 2023. Impact of climate change on wheat grain composition and quality, Journal of the Science of Food and Agriculture, 103(6), 2745-2751.
  • Zhang X., Chen S., Sun H., Pei D. & Wang Y. 2008. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat, Irrigation Science, 27(1), 1–10.

Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios

Year 2024, Volume: 8 Issue: 1, 85 - 95, 30.07.2024

Abstract

Climate change is now acknowledged as being one of the globe's most significant environmental challenges of today's World. One of the most frequently utilized agricultural crops in the world and is cultivated a wide range of staple foods and energy sources for its crucial economic significance in the Anatolia. Wheat is adapted to the local ecological circumstances in the Central Anatolian province of Konya. Therefore, it is essential to predict its response to changing climate. This work aimed to assess the potential influence of climate change on wheat yield and phenology alteration in Konya by applying the LINTUL-MULTICROP Model. Four distinct scenarios were contrasted to limit the impact of climate change on wheat production in the Konya province. The scenarios are as a) current condition, b) current condition +2°C, c) current condition +4°C, and d) current condition +200 ppm. Results indicate that a 2°C temperature increase leads to the yield from 5.5 to 6.9 t ha-1, while a 4°C increase further boosts the yield from 5.5 to 8.0 t ha-1. Additionally, an increase of 200 ppm in CO2 levels results in a yield of 7.1 t ha-1 with a corresponding change in Radiation Use Efficiency (RUE) to 1.56 g MJ-1. Changing the planting date can lessen the detrimental impacts of climate change on cereal production. It highlights the significance of irrigation to increase agricultural output and efficiently manage water resources

References

  • Ahmad A., Ashfaq M., Rasul G., Wajid S. A., Ahmad I., Khaliq T.... & Hoogenboom G. 2023. Development of Climate Change Adaptation Strategies for Cotton–Wheat Cropping System of Punjab Pakistan. In Handbook of Climate Change And Agroecosystems: Climate Change and Farming System Planning in Africa and South Asia: AgMIP Stakeholder-driven Research, Part 2 pp. 277-327.
  • Ahmed M., Asif M., Hirani A. H., Akram M. N. & Goyal A. 2013. Modeling for agricultural sustainability: A review. Elsevier. Pp 127-147.
  • Akman H., & Topal A. 2011. General Situation and Problems of Wheat Farming in Province of Konya, Selcuk Journal of Agriculture and Food Sciences, 25(4), 47-57.
  • Alexandrov V. A. & Hoogenboom G. 2000. The impact of climate variability and change on crop yield in Bulgaria, Agricultural and forest meteorology, 104(4), 315-327.
  • Alsafadi K., Bi, S., Abdo H. G., Almohamad, H., Alatrach B., Srivastava A. K., ... & Mohammed S. 2023. Modeling the impacts of projected climate change on wheat crop suitability in semi-arid regions using the AHP-based weighted climatic suitability index and CMIP6, Geoscience Letters, 10(1), 1-21.
  • Asseng S., Ewert F., Martre P., Rötter R. P., Lobell D. B., Cammarano D., ... & Zhu Y. 2015. Rising temperatures reduce global wheat production, Nature climate change, 5(2), 143-147.
  • Balaghi R., Tychon B., Eerens H. & Jlibene M. 2008. Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco, International Journal of Applied Earth Observation and Geoinformation, 10(4), 438-452.
  • Dettori M., Cesaraccio C. & Duce P. 2017. Simulation of climate change impacts on production and phenology of durum wheat in Mediterranean environments using CERES-Wheat model, Field Crops Research, 206, 43–53.
  • Dhakal A. 2021. Effect of drought stress and management in wheat—A review, Food Agribus. Manag, 2(2), 62-66.
  • Dündar M. A. & Topak R. 2021. Evaluation of Irrigation Productivity Using Different Irrigation Strategies for Winter Wheat, Bahri Dağdaş Bitkisel Araştırma Dergisi, 10(2), 124-137.
  • Fan J., McConkey B., Wang H. & Janzen H. 2016. Root distribution by depth for temperate agricultural crops, Field Crops Research, 189, 68-74.
  • Fang Y., Xu B., Turner N. C. & Li F.-M. 2010. Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning, European Journal of Agronomy, 33(4), 257–266.
  • Farooq M., Wahid A., Kobayashi N., Fujita D. & Basra S. M. A. 2009. Plant drought stress: effects, mechanisms and management, Sustainable agriculture, 153-188.
  • Farré I., Van Oijen M., Leffelaar P. A. & Faci J. M. 2000. Analysis of maize growth for different irrigation strategies in northeastern Spain, European Journal of Agronomy, 12(3-4), 225-238.
  • Franke A.C., Haverkort A.J. & Steyn J.M. 2013. Climate change and potato production in contrasting south African agro-ecosystems 2. Assessing risks and opportunities of adaptation strategies, Potato Res, 56(1): 51-66.
  • Gouache D., Le Bris X., Bogard M., Deudon O., Pagé C. & Gate P. 2012. Evaluating agronomic adaptation options to increas- ing heat stress under climate change during wheat grain filling in France, European Journal of Agronomy, 39, 62–70.
  • Monteith J. L. 1977. Climate and the efficiency of crop production in Britain. Philosophical transactions of the royal society of London, B, Biological Sciences, 281(980), 277-294.
  • Nouri M., Homaee M., Bannayan M. & Hoogenboom G. 2017. Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change, Agricultural water management, 186, 108-119.
  • Habekotté B. 1997. Description, parameterization and user guide of LINTUL-BRASNAP 1.1: a crop growth model of winter oilseed rape (Brassica napus L.). AB-DLO. ISBN: 9789073384514
  • Haverkort A. J., Franke A. C., Engelbrecht F. A. & Steyn J. M. 2013. Climate change and potato production in contrasting South African agro-ecosystems 1. Effects on land and water use efficiencies, Potato Research, 56, 31-50.
  • Hernandez-Ochoa I. M., Asseng S., Kassie B. T., Xiong W., Robertson R., Pequeno D. N. L....& Hoogenboom G. 2018. Climate change impact on Mexico wheat production, Agricultural and Forest Meteorology, 263, 373-387.
  • Hoogendoorn J. 1985. The physiology of variation in the time of ear emergence among wheat varieties from different regions of the world. Euphytica, 34(2), 559-571.
  • IPCC 2018. Intergovernmental Panel on Climate Change Report 2018 https://www.ipcc.ch/2018/ (accesed:15 April 2023)
  • Jaleel C. A., Manivannan, P., Wahid A., Farooq M., Al-Juburi H. J., Somasundaram R. & Panneerselvam R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition, Int. J. Agric. Biol, 11(1), 100-105.
  • Kettlewell P., Byrne R. & Jeffery S. 2023. Wheat area expansion into northern higher latitudes and global food security, Agriculture, Ecosystems & Environment, 351, 108499.
  • Khan A., Ahmad M., Ahmed M. & Iftikhar Hussain M. 2020. Rising atmospheric temperature impact on wheat and thermotolerance strategies, Plants, 10(1), 43.
  • Lee H., Calvin K., Dasgupta D., Krinner G., Mukherji A., Thorne P. ... & Park Y. 2023. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
  • Lobell D. B. & Burke M. B. 2010. On the use of statistical models to predict crop yield responses to climate change, Agricultural and forest meteorology, 150(11), 1443-1452.
  • Nouri M., Homaee M., Bannayan M. & Hoogenboom G. 2017. Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change, Agricultural water management, 186, 108-119.
  • Nyombi K. 2010. Understanding growth of East Africa highland banana: experiments and simulation, Wageningen University and Research. ISBN: 978-90-8585-550-7
  • Osman R., Ata-Ul-Karim S. T., Tahir M. N., Ishaque W. & Xu M. 2022. Multi-model ensembles for assessing the impact of future climate change on rainfed wheat productivity under various cultivars and nitrogen levels, European Journal of Agronomy, 139, 126554.
  • Özensel İ. E. 2023. Evaluation of the Factors Playing an Effective Role in Farmers' Selection of Cereals for Sowing by Dematel Method: (The Case of Konya Province). MSc Thesis, KTO Karatay University, Türkiye.
  • Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R. ... & van Ypserle, J. P. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC, p. 151. Papakosta D. K., & Gagianas A. A. 1991. Nitrogen and Dry Matter Accumulation, Remobilization, and Losses for Mediterranean Wheat during Grain Filling, Agronomy Journal, 83(5), 864–870.
  • Porter J. R. & Gawith M. 1999. Temperatures and the growth and development of wheat: a review, European journal of agronomy, 10(1), 23-36.
  • Purucker S. J. 2020. Agronomic and Nutrient Management Strategies to Improve Winter Wheat and Sugarbeet Plant Growth, Yield, and Quality. Michigan State University.
  • Raihan A. 2023. A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors, Journal of Environmental Science and Economics, 2(3), 36-58.
  • Rana R. M., Rehman S. U., Ahmed J. & Bilal M. 2013. A comprehensive overview of recent advances in drought stress tolerance research in wheat (Triticum aestivum L.), Asian Journal of Agriculture and Biology, 1(1), 29–37.
  • Republic of Türkiye Ministry of Agriculture and Forestry 2017. Serin İklim Tahılları Çeşit Tescil Raporu, Tarım Ürünleri Piyasa Raporu, TEPGE. https://www.tarimorman.gov.tr/BUGEM/TTSM/Belgeler/Yay%C4%B1nlar/2017%20Faliyet/Serin%20%C4%B0klim%20Tah%C4%B1llar%C4%B1%202017%20Tescil%20Raporu.pdf (accessed 17 April 2023).
  • Republic of Turkey Ministry of Agriculture and Forestry 2023. Buğday Tarımı. https://arastirma.tarimorman.gov.tr/ktae/Belgeler/brosurler/Bu%C4%9Fday%20Tar%C4%B1m%C4%B1.pdf (accessed 18 October 2023)
  • Sandaña, P., Ramírez, M. & Pinochet, D. (2012). Radiation interception and radiation use efficiency of wheat and pea under different P availabilities. Field crops research, 127, 44-50.
  • Shibu M. E., Leffelaar P. A., Van Keulen H. & Aggarwal P. K. 2010. LINTUL3, a simulation model for nitrogen-limited situations: Application to rice, European Journal of Agronomy, 32(4), 255-271.
  • Sommer R., Glazirina M., Yuldashev T., Otarov A., Ibraeva M., Martynova L., Bekenov M., Kholov B., Ibragimov N., & Kob- ilov R. 2013. Impact of climate change on wheat productivity in Central Asia, Agriculture, Ecosystem and Environment, 178, 78–99.
  • Spitters C. J. T. & Schapendonk A. H. C. M. 1990. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation, Genetic aspects of plant mineral nutrition, 151-161.
  • Tari A. F. 2016. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions, Agricultural Water Management, 167, 1-10.
  • Tang X., Song N., Chen Z., Wang J. & He J. 2018. Estimating the potential yield and ETc of winter wheat across Huang-Huai-Hai Plain in the future with the modified DSSAT model, Scientific Reports, 8(1), 15370.
  • Taulya G. 2015. Ky’osimba Onaanya: Understanding productivity of East African highland banana. PhD thesis, Wageningen University. ISBN 9789462575615 - 167
  • Thapa S., Xue Q., Jessup K. E., Rudd J. C., Liu S., Devkota R. N. & Baker J. A. 2020. Soil water extraction and use by winter wheat cultivars under limited irrigation in a semi-arid environment, Journal of Arid Environments, 174(March), 104046.
  • TSMS. 2022. Turkish State Meteorological Service, climate data of long term period. URL: https://mgm.gov.tr (accessed 17 April 2023).
  • TÜİK 2022. Wheat yield for Konya province in 2022. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (accessed 17 November 2023).
  • Wang B., Li Liu D., Asseng S., Macadam I. & Yu Q. 2015. Impact of climate change on wheat flowering time in eastern Australia, Agricultural and Forest Meteorology, 209, 11–21.
  • Yeşilköy S. & Şaylan L. 2020. Assessment and modelling of crop yield and water footprint of winter wheat by AquaCrop, Ital J Agrometeorol, 3, 3-14.
  • Zahra N., Hafeez M. B., Wahid A., Al Masruri M. H., Ullah A., Siddique K. H. & Farooq M. 2023. Impact of climate change on wheat grain composition and quality, Journal of the Science of Food and Agriculture, 103(6), 2745-2751.
  • Zhang X., Chen S., Sun H., Pei D. & Wang Y. 2008. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat, Irrigation Science, 27(1), 1–10.
There are 53 citations in total.

Details

Primary Language English
Subjects Ecological Impacts of Climate Change and Ecological Adaptation
Journal Section Articles
Authors

Ahmet Fatih Akansu 0000-0002-5254-1082

Tefide Kizildeniz

Early Pub Date June 27, 2024
Publication Date July 30, 2024
Submission Date April 18, 2024
Acceptance Date June 24, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Akansu, A. F., & Kizildeniz, T. (2024). Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios. Eurasian Journal of Agricultural Research, 8(1), 85-95.
AMA Akansu AF, Kizildeniz T. Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios. EJAR. July 2024;8(1):85-95.
Chicago Akansu, Ahmet Fatih, and Tefide Kizildeniz. “Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios”. Eurasian Journal of Agricultural Research 8, no. 1 (July 2024): 85-95.
EndNote Akansu AF, Kizildeniz T (July 1, 2024) Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios. Eurasian Journal of Agricultural Research 8 1 85–95.
IEEE A. F. Akansu and T. Kizildeniz, “Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios”, EJAR, vol. 8, no. 1, pp. 85–95, 2024.
ISNAD Akansu, Ahmet Fatih - Kizildeniz, Tefide. “Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios”. Eurasian Journal of Agricultural Research 8/1 (July 2024), 85-95.
JAMA Akansu AF, Kizildeniz T. Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios. EJAR. 2024;8:85–95.
MLA Akansu, Ahmet Fatih and Tefide Kizildeniz. “Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios”. Eurasian Journal of Agricultural Research, vol. 8, no. 1, 2024, pp. 85-95.
Vancouver Akansu AF, Kizildeniz T. Assessing Wheat Yield Responses and Growing Stages Alterations to Diverse Climate Change Scenarios. EJAR. 2024;8(1):85-9.
Eurasian Journal of Agricultural Research (EJAR)   ISSN: 2636-8226   Web: https://dergipark.org.tr/en/pub/ejar   e-mail: agriculturalresearchjournal@gmail.com