Research Article
BibTex RIS Cite

Effect of zinc oxide nanoparticle on acetylcholinesterase enzyme activity in Galleria mellonella L. (Lepidoptera: Pyralidae) larvae

Year 2020, Volume: 3 Issue: (Suppl 1), 213 - 216, 31.12.2020

Abstract

Zinc oxide nanoparticles (ZnO NP) is widely used in many field, food and packaging additives industry, cosmetics, sunscreens etc., with the devolopment of nanotechnology. Nanoparticles can readily pass through biological membranes and so cause negative effects and accumulation at the organ, tissue, cell and molecular level. In this study, 30 mg/l and 30 µg/mL concentrations of ZnO NP were injected into the first proleg of the last instar Galleria mellonella larvae. Then, the antioxidant stress level in fat body isolated from the control and application groups was determined by determining the AChE enzyme activity. As a result of the data obtained, AChE activity in fat body of G. mellonella larvae exposed to ZnO NP showed statistically significant increases and decreases in both groups compared to control. It have shown that, understanding the biochemical effects and determine to the possible changes of macromolecules in fat body of G.mellonella larvae, which is a simple, inexpensive and fast to produce model for toxicity studies, will help develop methods that have less adverse effects on the environment and lead to immunological and physiological studies.

Project Number

FBA/2020/12547

References

  • Bradford, M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry 72(1–2): 248–54.
  • Bronksil J.F. 1961.A Cage to Simplify the Rearing of The Greater Wax Moth, Galleria Mellonella (Pyralidae).Journal of Lepidopteran Society: 102–4.
  • Dow J.A.T. 2017.The Essential Roles of Metal Ions in Insect Homeostasis and Physiology.Current Opinion in Insect Science 23: 43–50.
  • Du J., Tang J., Xu S., Ge J., Dong Y., Li H. ve Jin M. 2018. ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug and Chemical Toxicology.
  • Ellman G.L., Courtney K.D., Andres V., Featherstone R.M., 1961. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology, 7:88-95.
  • Gavrilović A. 2017.Effects of Benzo[a]Pyrene Dietary Intake to Antioxidative Enzymes of Lymantria Dispar (Lepidoptera: Lymantriidae) Larvae from Unpolluted and Polluted Forests.Chemosphere 179: 10–19.
  • Gopi N., Vijayakumara S., Thaya R., Govindarajan M., Alharbi N., Kadaikunnan S., Khaled J., Al-Anbr M., Vaseeharan B..2019. Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: Effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune Responses. Journal of Trace Elements in Medicine and Biology Volume 55, Pages 170-179
  • Hermes-Lima M., Zenteno-Savı́n T.. 2002. Animal Response to Drastic Changes in Oxygen Availability and Physiological Oxidative Stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 133(4): 537–56.
  • Ibrahim A.M.A. ve Ali M. A.. 2018. Silver and Zinc Oxide Nanoparticles Induce Developmental and Physiological Changes in the Larval and Pupal Stages of Spodoptera Littoralis (Lepidoptera: Noctuidae).Journal of Asia-Pacific Entomology 21(4): 1373–78.
  • Jun X., Zhou Z. H. ve Hua L. G.. 2013. Effects of Selected Metal Oxide Nanoparticles on Multiple Biomarkers in Carassius auratus. Biomed Environ Sci, 2013; 26(9): 742-749
  • Keerthana S. ve Kumar A.. 2020. Potential risks and benefits of zinc oxide nanoparticles: a systematic review.
  • Kyu-Bong K., Kim Y. W. , Lim S.K., Roh T.H., Bang D.Y., Choi S.M., Lim Y., Kim Y. J., Baek S.-H., Kim M.-K., Seo H.-S., Kim M.-H., Kim H.S., Lee J. Y., Kacew S.,Lee B.-M..2017.Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. Journal of Toxicology and Environmental Health, Part B, VOL. 20, NO. 3, 155–182
  • Milivojevic´ T., Glavan G., Bozˇicˇ J., Sepcˇic´ K., Mesaricˇ T.,Drobne D..2015.Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere 120 (2015) 547–554
  • Perić-Mataruga, V. 2019.Parameters of Oxidative Stress, Cholinesterase Activity, Cd Bioaccumulation in the Brain and Midgut of Lymantria Dispar (Lepidoptera: Lymantriidae) Caterpillars from Unpolluted and Polluted Forests.Chemosphere 218: 416–24.
  • Portakal O..2008. Bioassays and Nanoparticles. Turkish Journal of Biochemistry ; 33 (1) ; 35–38.
  • Tunçsoy B.. 2017. Pyriproxyfen ve Bacillus thuringiensis ’in Galleria mellonella L.’ nin Oksidatif stres Düzeyi, Enzimatik Antioksidan Savunma Sistemi ve Hemosit Sayılarına Etkileri (Doktora Tezi)
  • Tunçsoy B., Tunçsoy M., Gomes T., Sousa V., Teixeira R. M., Bebianno M. J., Ozalp P..2018. Effects of Copper Oxide Nanoparticles on Tissue Accumulation and Antioxidant Enzymes of Galleria mellonella L. Bulletin of Environmental Contamination and Toxicology.
  • Weiss G., Carver P. L.. 2018. Role of Divalent Metals in Infectious Disease Susceptibility and Outcome.Clinical Microbiology and Infection 24(1): 16–23.

Çinko Oksit Nanopartikülünün Galleria mellonella (Lepidopetra:Pyralidae) (L.) Larvalarında Asetilkolinesteraz Enzim Aktivitesi Üzerine Etkisi

Year 2020, Volume: 3 Issue: (Suppl 1), 213 - 216, 31.12.2020

Abstract

Çinko oksit nanopartikülü (ZnO NP), nanoteknolojinin gelişmesiyle birçok alanda (gıda ve ambalaj katkı maddeleri sanayii, kozmetik, güneş kremleri v.b.) yaygın olarak kullanılmaktadır. Biyolojik membranlardan rahatlıkla geçebilen nanopartiküller organ, doku, hücre ve moleküler düzeyde olumsuz etkilere ve birikime neden olabilmektedirler. Yapılan çalışmada, Galleria mellonella son evre larvalarına arka bacaklarından ZnO NP enjeksiyon yoluyla 30 mg/l ve 30 µg/mL derişimlerinde uygulanmıştır. Uygulama sonunda kontrol ve deneme gruplarından izole edilen yağ dokudaki oksidatif stres düzeyi AChE enzim aktivitesinin tespiti ile belirlenmiştir. Elde edilen veriler sonucunda, ZnO NP maruz kalan G. mellonella larvalarının yağ dokudaki AChE aktivitesinde kontrole göre her iki uygulama grubunda da istatistiki olarak belirgin artış ve azalışlar göstermiştir. Toksisite çalışmaları için basit, ucuz ve hızlı üretilebilen bir model olan G. mellonella larvalarının yağ dokusundaki makromoleküllerin olası değişikliklerinin tespit edilmesi ile biyokimyasal etkilerin anlaşılması, çevreye daha az olumsuz etkisi olan yöntemlerin geliştirilmesine yardımcı olacağı ve elde edilen veriler doğrultusunda yapılacak immünolojik ve fizyolojik çalışmalara yol gösterebileceği düşünülmektedir

Supporting Institution

Ç.Ü. Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FBA/2020/12547

Thanks

Yapılan çalışma, Ç.Ü. Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir (FBA/2020/12547). Aynı zamanda bu çalışma, Gaziantep’te gerçekleştirilen 2nd International Eurasian Conference on Science, Engineering and Technolog (EurasianSciEnTech 2020) kongresinde sözlü bildiri olarak sunulmuştur.

References

  • Bradford, M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry 72(1–2): 248–54.
  • Bronksil J.F. 1961.A Cage to Simplify the Rearing of The Greater Wax Moth, Galleria Mellonella (Pyralidae).Journal of Lepidopteran Society: 102–4.
  • Dow J.A.T. 2017.The Essential Roles of Metal Ions in Insect Homeostasis and Physiology.Current Opinion in Insect Science 23: 43–50.
  • Du J., Tang J., Xu S., Ge J., Dong Y., Li H. ve Jin M. 2018. ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug and Chemical Toxicology.
  • Ellman G.L., Courtney K.D., Andres V., Featherstone R.M., 1961. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology, 7:88-95.
  • Gavrilović A. 2017.Effects of Benzo[a]Pyrene Dietary Intake to Antioxidative Enzymes of Lymantria Dispar (Lepidoptera: Lymantriidae) Larvae from Unpolluted and Polluted Forests.Chemosphere 179: 10–19.
  • Gopi N., Vijayakumara S., Thaya R., Govindarajan M., Alharbi N., Kadaikunnan S., Khaled J., Al-Anbr M., Vaseeharan B..2019. Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: Effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune Responses. Journal of Trace Elements in Medicine and Biology Volume 55, Pages 170-179
  • Hermes-Lima M., Zenteno-Savı́n T.. 2002. Animal Response to Drastic Changes in Oxygen Availability and Physiological Oxidative Stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 133(4): 537–56.
  • Ibrahim A.M.A. ve Ali M. A.. 2018. Silver and Zinc Oxide Nanoparticles Induce Developmental and Physiological Changes in the Larval and Pupal Stages of Spodoptera Littoralis (Lepidoptera: Noctuidae).Journal of Asia-Pacific Entomology 21(4): 1373–78.
  • Jun X., Zhou Z. H. ve Hua L. G.. 2013. Effects of Selected Metal Oxide Nanoparticles on Multiple Biomarkers in Carassius auratus. Biomed Environ Sci, 2013; 26(9): 742-749
  • Keerthana S. ve Kumar A.. 2020. Potential risks and benefits of zinc oxide nanoparticles: a systematic review.
  • Kyu-Bong K., Kim Y. W. , Lim S.K., Roh T.H., Bang D.Y., Choi S.M., Lim Y., Kim Y. J., Baek S.-H., Kim M.-K., Seo H.-S., Kim M.-H., Kim H.S., Lee J. Y., Kacew S.,Lee B.-M..2017.Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. Journal of Toxicology and Environmental Health, Part B, VOL. 20, NO. 3, 155–182
  • Milivojevic´ T., Glavan G., Bozˇicˇ J., Sepcˇic´ K., Mesaricˇ T.,Drobne D..2015.Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere 120 (2015) 547–554
  • Perić-Mataruga, V. 2019.Parameters of Oxidative Stress, Cholinesterase Activity, Cd Bioaccumulation in the Brain and Midgut of Lymantria Dispar (Lepidoptera: Lymantriidae) Caterpillars from Unpolluted and Polluted Forests.Chemosphere 218: 416–24.
  • Portakal O..2008. Bioassays and Nanoparticles. Turkish Journal of Biochemistry ; 33 (1) ; 35–38.
  • Tunçsoy B.. 2017. Pyriproxyfen ve Bacillus thuringiensis ’in Galleria mellonella L.’ nin Oksidatif stres Düzeyi, Enzimatik Antioksidan Savunma Sistemi ve Hemosit Sayılarına Etkileri (Doktora Tezi)
  • Tunçsoy B., Tunçsoy M., Gomes T., Sousa V., Teixeira R. M., Bebianno M. J., Ozalp P..2018. Effects of Copper Oxide Nanoparticles on Tissue Accumulation and Antioxidant Enzymes of Galleria mellonella L. Bulletin of Environmental Contamination and Toxicology.
  • Weiss G., Carver P. L.. 2018. Role of Divalent Metals in Infectious Disease Susceptibility and Outcome.Clinical Microbiology and Infection 24(1): 16–23.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Articles
Authors

Pınar Özalp

Benay Tunçsoy

Yağmur Meşe 0000-0002-3605-0689

Project Number FBA/2020/12547
Publication Date December 31, 2020
Acceptance Date December 25, 2020
Published in Issue Year 2020 Volume: 3 Issue: (Suppl 1)

Cite

APA Özalp, P., Tunçsoy, B., & Meşe, Y. (2020). Çinko Oksit Nanopartikülünün Galleria mellonella (Lepidopetra:Pyralidae) (L.) Larvalarında Asetilkolinesteraz Enzim Aktivitesi Üzerine Etkisi. Eurasian Journal of Biological and Chemical Sciences, 3((Suppl 1), 213-216.
AMA Özalp P, Tunçsoy B, Meşe Y. Çinko Oksit Nanopartikülünün Galleria mellonella (Lepidopetra:Pyralidae) (L.) Larvalarında Asetilkolinesteraz Enzim Aktivitesi Üzerine Etkisi. Eurasian J. Bio. Chem. Sci. December 2020;3((Suppl 1):213-216.
Chicago Özalp, Pınar, Benay Tunçsoy, and Yağmur Meşe. “Çinko Oksit Nanopartikülünün Galleria Mellonella (Lepidopetra:Pyralidae) (L.) Larvalarında Asetilkolinesteraz Enzim Aktivitesi Üzerine Etkisi”. Eurasian Journal of Biological and Chemical Sciences 3, no. (Suppl 1) (December 2020): 213-16.
EndNote Özalp P, Tunçsoy B, Meşe Y (December 1, 2020) Çinko Oksit Nanopartikülünün Galleria mellonella (Lepidopetra:Pyralidae) (L.) Larvalarında Asetilkolinesteraz Enzim Aktivitesi Üzerine Etkisi. Eurasian Journal of Biological and Chemical Sciences 3 (Suppl 1) 213–216.
IEEE P. Özalp, B. Tunçsoy, and Y. Meşe, “Çinko Oksit Nanopartikülünün Galleria mellonella (Lepidopetra:Pyralidae) (L.) Larvalarında Asetilkolinesteraz Enzim Aktivitesi Üzerine Etkisi”, Eurasian J. Bio. Chem. Sci., vol. 3, no. (Suppl 1), pp. 213–216, 2020.
ISNAD Özalp, Pınar et al. “Çinko Oksit Nanopartikülünün Galleria Mellonella (Lepidopetra:Pyralidae) (L.) Larvalarında Asetilkolinesteraz Enzim Aktivitesi Üzerine Etkisi”. Eurasian Journal of Biological and Chemical Sciences 3/(Suppl 1) (December 2020), 213-216.
JAMA Özalp P, Tunçsoy B, Meşe Y. Çinko Oksit Nanopartikülünün Galleria mellonella (Lepidopetra:Pyralidae) (L.) Larvalarında Asetilkolinesteraz Enzim Aktivitesi Üzerine Etkisi. Eurasian J. Bio. Chem. Sci. 2020;3:213–216.
MLA Özalp, Pınar et al. “Çinko Oksit Nanopartikülünün Galleria Mellonella (Lepidopetra:Pyralidae) (L.) Larvalarında Asetilkolinesteraz Enzim Aktivitesi Üzerine Etkisi”. Eurasian Journal of Biological and Chemical Sciences, vol. 3, no. (Suppl 1), 2020, pp. 213-6.
Vancouver Özalp P, Tunçsoy B, Meşe Y. Çinko Oksit Nanopartikülünün Galleria mellonella (Lepidopetra:Pyralidae) (L.) Larvalarında Asetilkolinesteraz Enzim Aktivitesi Üzerine Etkisi. Eurasian J. Bio. Chem. Sci. 2020;3((Suppl 1):213-6.