Research Article
BibTex RIS Cite

Evaluating the strength properties of standing trees through fractometry

Year 2023, , 137 - 150, 29.10.2023
https://doi.org/10.31195/ejejfs.1359426

Abstract

In recent years, significant advancements in non-destructive testing (NDT) methodologies have emerged, with applications spanning various domains, including structural wood quality assessment and planted tree characteristic evaluation. Within the context of planted trees, a range of non-destructive and semi-destructive techniques have been developed to assess the extent of degradation in tree trunks. In this study, various mechanical characteristics of brutian pine (Pinus brutia Ten.) trees near the Ertokuş Madrasah in the Atabey district of the province of Isparta are examined. Beside their historical significance, these trees are notable for the potential risk they present in terms of leaning towards the madrasah facade and the risk of falling over. To achieve the goals of research, the resistance characteristics of incremental cores were systematically determined by using a thermal imaging camera in conjunction with a portable, non-destructive testing device called a Fractometer. Totally 15 incremental auger specimens were obtained by extracting three increment core samples, each with a thickness of 5 mm, from the trunks of five distinct trees, all at a consistent height of 1.3 meters above ground level. Bending and compressive strength measurements were recorded at intervals of 6 mm from the core to the outermost layer. Furthermore, the moisture content of the incremental cores was assessed using thermal imaging technology. Following an analysis of the collected data, it was concluded that the mechanical properties of the investigated brutian pine trees within an acceptable range.

References

  • Akbulut, S., Keten, A., Yüksel, B. (2008). Wood destroying insects in Düzce province. Turkish Journal of Zoology, 32(3): 343-350.
  • Akgün, K. 82008). The effects of tannin and heat treatment on some physical and mechanical properties of laminated chestnut (Castanea sativa mill.) wood. Zonguldak Karaelmas University, MsC Thesis, 79s, Zonguldak, Türkiye.
  • Allison, R. B., Wang, X., Ross, R. J. (2008). Visual and nondestructive evaluation of brutian pines supporting a ropes course in the USFS Nesbit Lake Camp, Sidnaw, Michigan. In Proceedings, 15th international symposium on nondestructive testing of wood. Madison, WI: Forest Products Society (pp. 43-48).
  • Aydemir, D., Gündüz, G., Altuntaş, E., Ertaş, M., Şahin, H. T., Alma, MH. (2011). Investigating changes in the chemical constituents and dimensional stability of heat-treated horn beam and uludag fir wood. BioRes, 6(2): 1308-1321.
  • Bethge, K., Mattheck, C., Hunger, E. (1996). Equipment for detection and evaluation of incipient decay in trees. Arboricultural Journal, 20(1), 13-37.
  • Bethge, K., Mattheck, C., Hunger, E. (1996). Equipment for detection and evaluation of incipient decay in trees. Arboricultural Journal, 20: 13–37.
  • Beyaz, A., Özkaya, M. T. (2021). Canopy analysis and thermographic abnormalities determination possibilities of olive trees by using data mining algorithms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12139-12139.
  • Bozkurt, A.Y., Göker, Y. (1981). Orman Ürünlerinden Faydalanma. İstanbul Üniversitesi, Yayın No: 2840, 432 s. İstanbul.
  • Bravery, A. F., Berry, R. W., Carey, J. K., Cooper, D. E. (1987). Recognising wood rot and insect damage in buildings,3, Watford: Building Research Establishment.
  • Bucur, V. (2003). Nondestructive Characterization and Imaging of Wood, Springer Series in Wood Science, Springer-Verlag New York.
  • Catena, A. (1991). La Termografia per la salvaguardia di esemplari arborei monumentali (Thermography for safeguarding exemplary trees). Linea ecologica, 6: 18-20.
  • Catena, A. (2003). Thermography reveals hidden tree decay, Arboricultural Journal, 27: 27-42. Catena, A., Catena, G., 2008. Overview of Thermal Imaging for Tree Assessment, Arboricultural Journal, 30: 259-270.
  • Catena, G. (1992). Using thermography as an application in phytopathology. Diagnosing the condition of sycamore trees. Phytoma La Defense des Vegetaux (France).
  • Catena, G., Catalano, M., Palla, L. (1990). Thermal infrared detection of cavities in trees. European Journal of Forest Pathology, 20: 201–210.
  • Catena, G., Catena, A. (2000). Termography for the evaluation of cavities and pathological tissues in trees, Agric Ricerca, 185: 47-64.
  • Çetin, F., Gunduz G. (2016). Türkiye’deki Bazı Ağaç Türü Odunlarının Fiziksel Özellikleri Üzerine Yapılan Araştırmaların Değerlendirilmesi. Bartın Orman Fakültesi Dergisi, 18(2): 175-193.
  • Chiu, C.M., Wang, S.Y., Lin, C.J., Yang, T.H., Jane, M.C. (2006). Application of The Fractometer for Crushing Strength: Juvenile-Mature Wood Demarcation in Taiwania (Taiwanie cryptomerioids), Journal Wood Science, 52: 9-14.
  • Clark, A., Daniels, R. F., Jordan, L. ( 2007). Juvenile/mature wood transition in loblolly pine as defined by annual ring specific gravity, proportion of latewood, and microfibril angle. Wood and Fiber Science, 2007; 38(2): 292-299.
  • Dragavtsev V., Nartov V.P. (2015), Application of thermal imaging in agriculture and forestry, European Agrophysical Journal, 2(1): 15-23.
  • Fang, Y., Lin, L., Feng, H., Lu, Z., Emms, G. W. (2017). Review of the use of air-coupled ultrasonic technologies for nondestructive testing of wood and wood products. Computers and Electronics In Agriculture, 137: 79-87.
  • Ganesan, S. K., Hamid, M. A. (2010). Survey of wood strength properties of urban trees in Singapore using the Fractometer II. Journal Of Tropical Forest Science, 97-105.
  • Jiang, A., Noguchi, R., Ahamed, T. (2022). Tree trunk recognition in orchard autonomous operations under different light conditions using a thermal camera and faster R-CNN. Sensors, 22(5), 2065.
  • Jones, D., Sandberg, D., Goli, G., Todaro, L. (2019). Wood Modification in Europe: a state-of-the-art about processes, products and applications (p. 123). Firenze University Press.
  • Johnstone, D., Moore, G., Tausz, M., & Nicolas, M. (2010). The measurement of wood decay in landscape trees. Arboriculture & Urban Forestry, 36(3), 121-127.
  • Kaya, A. İ., Yalçin, Ö. Ü., Türker, Y. (2021). Physical, Mechanical and Thermal Properties of Brutian pine Wood-Gypsum Particleboard. Bilge International Journal of Science and Technology Research, 5(2), 139-145.
  • Kilinçarslan, Ş., Türker, Y. Ş. (2021). The Effect of industrial heat treatment on the wettability and dimensional stability of ash (Fraxinus excelsior) wood. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 473-480.
  • Kilinçarslan, Ş., Türker, Y. Ş., İnce, M. (2020). Prediction of heat-treated cedar wood swelling and shrinkage values with artificial neural networks and random forest algorithm. Mühendislik Bilimleri ve Tasarım Dergisi, 8(5), 200-205.
  • Leuzinger, S., Vogt, R., Körner, C. (2010). Tree surface temperature in an urban environment. Agricultural and Forest Meteorology, 150(1), 56-62.
  • Li, H., Zhang, X., Li, Z., Wen, J., Tan, X. (2022). A review of research on tree risk assessment methods. Forests, 13(10), 1556.
  • Lin, C,J., Wang, S.Y., Chiu, M.C. (2007). Crushing strength sampling with minimal damage to taiwania (Taıwanıa cryptomerıoıdes) using a fractometer, Wood and Fiber Science, 39(1): 39 – 47.
  • Lin, C. J., Wang, S. Y., Yang, T. H., & Tsai, M. J. (2006). Compressive strength of young Taiwania (Taiwania cryptomerioides) trees grown with different thinning and pruning treatments. Journal of Wood Science, 52, 337-341.
  • Llana, D. F., Short, I., Harte, A. M. (2020). Use of non-destructive test methods on Irish hardwood standing trees and small-diameter round timber for prediction of mechanical properties. Annals of Forest Science, 77, 1-13.
  • Lonsdale, W. M. (1999). Global patterns of plant invasions and the concept of invasibility. Ecology, 80(5): 1522-1536.
  • Mattheck CG, Breloer H, Bethge KA, Albrecht W & Zipse A. 1995. Use of the Fractometer to determine the strength of wood with incipient decay. Journal of Arboriculture 21:105-112.
  • Malanowski, N., Bachmann, G., Hutapea, L., Kaiser, O. S., Knifka, J., Ratajczak, A., Rijkers-Defrasne, S. (2019). Monitoring Innovations-und Technologiepolitik (Zyklus 1): Ergebnisbericht (No. 152). Working Paper Forschungsförderung.
  • Matsumoto, K., Ishiguri, F., Iizuka, K., Yokota, S., Habu, N., Yoshizawa, N. (2010). Evaluation of compressive strength of decayed wood in Magnolia obovata. Journal of Arboriculture, 36(2), 81.
  • Matsumoto, K., Ishiguri, F., Iizuka, K., Yokota, S., Yoshizawa, N. (2008). Evaluation of bending and compression strength of wood using fractometer. Wood Industry, Japan.
  • Mattheck, C., Kubler, H., Mattheck, C., Kubler, H. (1997). Stress-controlled strength distribution. Wood-The Internal Optimization Of Trees, 90-108.
  • Riggio, M., Anthony, R. W., Augelli, F., Kasal, B., Lechner, T., Muller, W., Tannert, T. (2014). In situ assessment of structural timber using non-destructive techniques. Materials and Structures, 47, 749-766.
  • Ross, R. J., Soltis, L. A., Otton, P. (1998). Assessing wood members in the USS Constitution using non-destructive evaluation methods. Apt Bulletin-Fredericksburg Va-, 29, 21-26.
  • Ross, R.J., Pellerin, R.F. (1991). Stress wave evaluation of green material: preliminary results using dimension lumber. Forest Products Journal, 41(6): 57–59.
  • Ross, R.J., Pellerin, R.F. (1994). Nondestructive testing for assessing wood members in structures: A review. Gen. Tech. Rep. FPL-GTR-70 (Rev.). Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 40 p.
  • RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
  • Şimşek Türker, Y. (2017). Applicability of thermography in determination of juvenile wood part in Pinus brutia. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Orman Endüstri Mühendisliği Anabilim Dalı, 107 s., Isparta.
  • Tang, A. M. C., Chu, P. P. L., Leung, M. W. K., Chu, L. M., Liao, W. H. (2016). Evaluating wood strength properties of subtropical urban trees using fractometer II. Journal of Tropical Forest Science, 249-259.
  • Tang, A. M. C., Chu, P. P. L., Leung, M. W. K., Chu, L. M., Liao, W. H. (2016). Evaluating wood strength properties of subtropical urban trees using fractometer. Journal Of Tropical Forest Science, 2016; 249-259.
  • Tannert, T., Anthony, R. W., Kasal, B., Kloiber, M., Piazza, M., Riggio, M., Yamaguchi, N. (2014). In situ assessment of structural timber using semi-destructive techniques. Materials and Structures, 47, 767-785.
  • Wang, X., Allison, R. B. (2008). Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboriculture & Urban Forestry, 34(1), 1-4.
  • Wang, S. Y., Chen, J. H., Hsu, K. P., Lin, C. J., & Jane, M. C. (2008). Ring characteristics and compressive strength of Japanese cedar trees grown under different silvicultural treatments. Wood and Fiber Science, 384-391.
  • Yıldız, S. (2002). Isıl işlem uygulanan doğu kayını ve doğu ladini odunlarının fiziksel, mekanik ve kimyasal özellikleri. Karadeniz Teknik Üniversitesi, Doktora Tezi, Trabzon-Türkiye.
  • Yu, T., Sousa, H. S., Branco, J. M. (2020). Combination of non-destructive tests for assessing decay in existing timber elements. Nondestructive Testing and Evaluation, 35(1), 29-47.
  • Zevgolis, Y. G., Alsamail, M. Z., Akriotis, T., Dimitrakopoulos, P. G., Troumbis, A. Y. (2022). Detecting, quantifying, and mapping urban trees' structural defects using infrared thermography: Implications for tree risk assessment and management. Urban Forestry & Urban Greening, 75, 127691.
  • Živanović, I., Poduška, Z., Rakonjac, L., & Jovanović, F. (2019). Potentials of the evaluation of the wood quality in living trees by using semi-and non-destructive methods in order to reduce wood-processing costs. Sustainable Forestry: Collection, (79-80), 115-126.
Year 2023, , 137 - 150, 29.10.2023
https://doi.org/10.31195/ejejfs.1359426

Abstract

References

  • Akbulut, S., Keten, A., Yüksel, B. (2008). Wood destroying insects in Düzce province. Turkish Journal of Zoology, 32(3): 343-350.
  • Akgün, K. 82008). The effects of tannin and heat treatment on some physical and mechanical properties of laminated chestnut (Castanea sativa mill.) wood. Zonguldak Karaelmas University, MsC Thesis, 79s, Zonguldak, Türkiye.
  • Allison, R. B., Wang, X., Ross, R. J. (2008). Visual and nondestructive evaluation of brutian pines supporting a ropes course in the USFS Nesbit Lake Camp, Sidnaw, Michigan. In Proceedings, 15th international symposium on nondestructive testing of wood. Madison, WI: Forest Products Society (pp. 43-48).
  • Aydemir, D., Gündüz, G., Altuntaş, E., Ertaş, M., Şahin, H. T., Alma, MH. (2011). Investigating changes in the chemical constituents and dimensional stability of heat-treated horn beam and uludag fir wood. BioRes, 6(2): 1308-1321.
  • Bethge, K., Mattheck, C., Hunger, E. (1996). Equipment for detection and evaluation of incipient decay in trees. Arboricultural Journal, 20(1), 13-37.
  • Bethge, K., Mattheck, C., Hunger, E. (1996). Equipment for detection and evaluation of incipient decay in trees. Arboricultural Journal, 20: 13–37.
  • Beyaz, A., Özkaya, M. T. (2021). Canopy analysis and thermographic abnormalities determination possibilities of olive trees by using data mining algorithms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12139-12139.
  • Bozkurt, A.Y., Göker, Y. (1981). Orman Ürünlerinden Faydalanma. İstanbul Üniversitesi, Yayın No: 2840, 432 s. İstanbul.
  • Bravery, A. F., Berry, R. W., Carey, J. K., Cooper, D. E. (1987). Recognising wood rot and insect damage in buildings,3, Watford: Building Research Establishment.
  • Bucur, V. (2003). Nondestructive Characterization and Imaging of Wood, Springer Series in Wood Science, Springer-Verlag New York.
  • Catena, A. (1991). La Termografia per la salvaguardia di esemplari arborei monumentali (Thermography for safeguarding exemplary trees). Linea ecologica, 6: 18-20.
  • Catena, A. (2003). Thermography reveals hidden tree decay, Arboricultural Journal, 27: 27-42. Catena, A., Catena, G., 2008. Overview of Thermal Imaging for Tree Assessment, Arboricultural Journal, 30: 259-270.
  • Catena, G. (1992). Using thermography as an application in phytopathology. Diagnosing the condition of sycamore trees. Phytoma La Defense des Vegetaux (France).
  • Catena, G., Catalano, M., Palla, L. (1990). Thermal infrared detection of cavities in trees. European Journal of Forest Pathology, 20: 201–210.
  • Catena, G., Catena, A. (2000). Termography for the evaluation of cavities and pathological tissues in trees, Agric Ricerca, 185: 47-64.
  • Çetin, F., Gunduz G. (2016). Türkiye’deki Bazı Ağaç Türü Odunlarının Fiziksel Özellikleri Üzerine Yapılan Araştırmaların Değerlendirilmesi. Bartın Orman Fakültesi Dergisi, 18(2): 175-193.
  • Chiu, C.M., Wang, S.Y., Lin, C.J., Yang, T.H., Jane, M.C. (2006). Application of The Fractometer for Crushing Strength: Juvenile-Mature Wood Demarcation in Taiwania (Taiwanie cryptomerioids), Journal Wood Science, 52: 9-14.
  • Clark, A., Daniels, R. F., Jordan, L. ( 2007). Juvenile/mature wood transition in loblolly pine as defined by annual ring specific gravity, proportion of latewood, and microfibril angle. Wood and Fiber Science, 2007; 38(2): 292-299.
  • Dragavtsev V., Nartov V.P. (2015), Application of thermal imaging in agriculture and forestry, European Agrophysical Journal, 2(1): 15-23.
  • Fang, Y., Lin, L., Feng, H., Lu, Z., Emms, G. W. (2017). Review of the use of air-coupled ultrasonic technologies for nondestructive testing of wood and wood products. Computers and Electronics In Agriculture, 137: 79-87.
  • Ganesan, S. K., Hamid, M. A. (2010). Survey of wood strength properties of urban trees in Singapore using the Fractometer II. Journal Of Tropical Forest Science, 97-105.
  • Jiang, A., Noguchi, R., Ahamed, T. (2022). Tree trunk recognition in orchard autonomous operations under different light conditions using a thermal camera and faster R-CNN. Sensors, 22(5), 2065.
  • Jones, D., Sandberg, D., Goli, G., Todaro, L. (2019). Wood Modification in Europe: a state-of-the-art about processes, products and applications (p. 123). Firenze University Press.
  • Johnstone, D., Moore, G., Tausz, M., & Nicolas, M. (2010). The measurement of wood decay in landscape trees. Arboriculture & Urban Forestry, 36(3), 121-127.
  • Kaya, A. İ., Yalçin, Ö. Ü., Türker, Y. (2021). Physical, Mechanical and Thermal Properties of Brutian pine Wood-Gypsum Particleboard. Bilge International Journal of Science and Technology Research, 5(2), 139-145.
  • Kilinçarslan, Ş., Türker, Y. Ş. (2021). The Effect of industrial heat treatment on the wettability and dimensional stability of ash (Fraxinus excelsior) wood. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 473-480.
  • Kilinçarslan, Ş., Türker, Y. Ş., İnce, M. (2020). Prediction of heat-treated cedar wood swelling and shrinkage values with artificial neural networks and random forest algorithm. Mühendislik Bilimleri ve Tasarım Dergisi, 8(5), 200-205.
  • Leuzinger, S., Vogt, R., Körner, C. (2010). Tree surface temperature in an urban environment. Agricultural and Forest Meteorology, 150(1), 56-62.
  • Li, H., Zhang, X., Li, Z., Wen, J., Tan, X. (2022). A review of research on tree risk assessment methods. Forests, 13(10), 1556.
  • Lin, C,J., Wang, S.Y., Chiu, M.C. (2007). Crushing strength sampling with minimal damage to taiwania (Taıwanıa cryptomerıoıdes) using a fractometer, Wood and Fiber Science, 39(1): 39 – 47.
  • Lin, C. J., Wang, S. Y., Yang, T. H., & Tsai, M. J. (2006). Compressive strength of young Taiwania (Taiwania cryptomerioides) trees grown with different thinning and pruning treatments. Journal of Wood Science, 52, 337-341.
  • Llana, D. F., Short, I., Harte, A. M. (2020). Use of non-destructive test methods on Irish hardwood standing trees and small-diameter round timber for prediction of mechanical properties. Annals of Forest Science, 77, 1-13.
  • Lonsdale, W. M. (1999). Global patterns of plant invasions and the concept of invasibility. Ecology, 80(5): 1522-1536.
  • Mattheck CG, Breloer H, Bethge KA, Albrecht W & Zipse A. 1995. Use of the Fractometer to determine the strength of wood with incipient decay. Journal of Arboriculture 21:105-112.
  • Malanowski, N., Bachmann, G., Hutapea, L., Kaiser, O. S., Knifka, J., Ratajczak, A., Rijkers-Defrasne, S. (2019). Monitoring Innovations-und Technologiepolitik (Zyklus 1): Ergebnisbericht (No. 152). Working Paper Forschungsförderung.
  • Matsumoto, K., Ishiguri, F., Iizuka, K., Yokota, S., Habu, N., Yoshizawa, N. (2010). Evaluation of compressive strength of decayed wood in Magnolia obovata. Journal of Arboriculture, 36(2), 81.
  • Matsumoto, K., Ishiguri, F., Iizuka, K., Yokota, S., Yoshizawa, N. (2008). Evaluation of bending and compression strength of wood using fractometer. Wood Industry, Japan.
  • Mattheck, C., Kubler, H., Mattheck, C., Kubler, H. (1997). Stress-controlled strength distribution. Wood-The Internal Optimization Of Trees, 90-108.
  • Riggio, M., Anthony, R. W., Augelli, F., Kasal, B., Lechner, T., Muller, W., Tannert, T. (2014). In situ assessment of structural timber using non-destructive techniques. Materials and Structures, 47, 749-766.
  • Ross, R. J., Soltis, L. A., Otton, P. (1998). Assessing wood members in the USS Constitution using non-destructive evaluation methods. Apt Bulletin-Fredericksburg Va-, 29, 21-26.
  • Ross, R.J., Pellerin, R.F. (1991). Stress wave evaluation of green material: preliminary results using dimension lumber. Forest Products Journal, 41(6): 57–59.
  • Ross, R.J., Pellerin, R.F. (1994). Nondestructive testing for assessing wood members in structures: A review. Gen. Tech. Rep. FPL-GTR-70 (Rev.). Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 40 p.
  • RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
  • Şimşek Türker, Y. (2017). Applicability of thermography in determination of juvenile wood part in Pinus brutia. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Orman Endüstri Mühendisliği Anabilim Dalı, 107 s., Isparta.
  • Tang, A. M. C., Chu, P. P. L., Leung, M. W. K., Chu, L. M., Liao, W. H. (2016). Evaluating wood strength properties of subtropical urban trees using fractometer II. Journal of Tropical Forest Science, 249-259.
  • Tang, A. M. C., Chu, P. P. L., Leung, M. W. K., Chu, L. M., Liao, W. H. (2016). Evaluating wood strength properties of subtropical urban trees using fractometer. Journal Of Tropical Forest Science, 2016; 249-259.
  • Tannert, T., Anthony, R. W., Kasal, B., Kloiber, M., Piazza, M., Riggio, M., Yamaguchi, N. (2014). In situ assessment of structural timber using semi-destructive techniques. Materials and Structures, 47, 767-785.
  • Wang, X., Allison, R. B. (2008). Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboriculture & Urban Forestry, 34(1), 1-4.
  • Wang, S. Y., Chen, J. H., Hsu, K. P., Lin, C. J., & Jane, M. C. (2008). Ring characteristics and compressive strength of Japanese cedar trees grown under different silvicultural treatments. Wood and Fiber Science, 384-391.
  • Yıldız, S. (2002). Isıl işlem uygulanan doğu kayını ve doğu ladini odunlarının fiziksel, mekanik ve kimyasal özellikleri. Karadeniz Teknik Üniversitesi, Doktora Tezi, Trabzon-Türkiye.
  • Yu, T., Sousa, H. S., Branco, J. M. (2020). Combination of non-destructive tests for assessing decay in existing timber elements. Nondestructive Testing and Evaluation, 35(1), 29-47.
  • Zevgolis, Y. G., Alsamail, M. Z., Akriotis, T., Dimitrakopoulos, P. G., Troumbis, A. Y. (2022). Detecting, quantifying, and mapping urban trees' structural defects using infrared thermography: Implications for tree risk assessment and management. Urban Forestry & Urban Greening, 75, 127691.
  • Živanović, I., Poduška, Z., Rakonjac, L., & Jovanović, F. (2019). Potentials of the evaluation of the wood quality in living trees by using semi-and non-destructive methods in order to reduce wood-processing costs. Sustainable Forestry: Collection, (79-80), 115-126.
There are 53 citations in total.

Details

Primary Language English
Subjects Wood Physics and Mechanics
Journal Section Articles
Authors

Abdullah Beram 0000-0001-6532-8718

Publication Date October 29, 2023
Submission Date September 13, 2023
Published in Issue Year 2023

Cite

APA Beram, A. (2023). Evaluating the strength properties of standing trees through fractometry. Eurasian Journal of Forest Science, 11(3), 137-150. https://doi.org/10.31195/ejejfs.1359426

 

E-posta: hbarist@gmail.com 

 

Eurasian Journal of Forest Science © 2013 is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1