Research Article
BibTex RIS Cite

Performance of Dual Axis Solar Tracking System Using Fuzzy Logic Control: A Case Study in Pinarhisar, Turkey

Year 2017, Volume: 2 Issue: 1, 130 - 136, 25.02.2017

Abstract

Generating electrical via solar energy is
one of the most popular renewable energy source. Modular structured solar
panels that work according to photovoltaic principles convert solar radiation
into electrical energy. There are some ways of increasing the power produced by
the photovoltaic panels. One of the most effective ways is to minimize the
angel of rays from sun to panel surface by taking the right position according
to the angle of the sun. This paper proposes an intelligent control method for
solar tracking. This method uses a fuzzy logic controller applied to
 the DC motors in solar tracking system (STS). STS is
designed and developed as dual axis. Fuzzy logic algorithm used in STS was
applied separately in order to control DC motors which determine the azimuth
and zenith angels of the system. Position error which is obtained by the help
of encoders tied to the motors and error variation were taken as input of fuzzy
logic algorithm, applied voltage to the motor was taken as output of fuzzy
logic algorithm.
 Finally, results of the photovoltaic panel
on the STS controlled by fuzzy logic are compared to those obtained by the
photovoltaic panel system without STS according to instantaneous power
performance throughout the day in Pinarhisar, Turkey. Experimental results show
that the STS which uses fuzzy logic controller increases the efficiency of
energy production from PV.

References

  • [1]. V. Khare, S.Nema, and P.Baredar,“Status of solar wind renewable energy in India,” Renewable and Sustainable Energy Reviews, vol. 27, pp. 1–10, Nov.2013
  • [2]. V. Subramanian, “Renewable energy in India: status and future prospects,” Ministry of New and Renewable Energy, 2007
  • [3]. S. K. Sahoo, “Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 927–939, June.2016
  • [4]. (2016) The teias website. [Online]. Available: http:// www.teias.gov.tr/yukdagitim/kuruluguc
  • [5]. S. Sun, J. Brooks, T. Nguyen, A. Harding, D. Wang, and T. David, “Novel Organic and Polymeric Materials for Solar Energy,” Energy Procedia, vol.57, pp.79 – 88, 2014.
  • [6]. P. Oelhafen and A. Schuler, “Nanostructured materials for solar energy conversion,” Solar Energy, vol.79, pp.110–121, August. 2005.
  • [7]. R. Pradhan and B. Subudhi, “Design and real-time implementation of a new auto-tuned adaptive MPPT control for a photovoltaic system,” Electrical Power and Energy Systems, vol. 64, pp.792–80, 2015.
  • [8]. S. Daraban, D. Petreus, and C. Morel, “A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading,” Energy, vol.74, pp.374-388, Sep.2014.
  • [9]. I. Stamatescu, I. Făgărășan, G. Stamatescu, N. Arghira, and S.S. Iliescu, “Design and Implementation of a Solar-Tracking Algorithm,” Procedia Engineering, vol.9, pp. 500-507, 2014.
  • [10]. İ. Sefa, M. Demirtas, and İ. Çolak, “Application of one-axis sun tracking system, Energy Conversion and Management, vol. 50, pp. 2709–2718 Nov. 2009.
Year 2017, Volume: 2 Issue: 1, 130 - 136, 25.02.2017

Abstract

References

  • [1]. V. Khare, S.Nema, and P.Baredar,“Status of solar wind renewable energy in India,” Renewable and Sustainable Energy Reviews, vol. 27, pp. 1–10, Nov.2013
  • [2]. V. Subramanian, “Renewable energy in India: status and future prospects,” Ministry of New and Renewable Energy, 2007
  • [3]. S. K. Sahoo, “Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 927–939, June.2016
  • [4]. (2016) The teias website. [Online]. Available: http:// www.teias.gov.tr/yukdagitim/kuruluguc
  • [5]. S. Sun, J. Brooks, T. Nguyen, A. Harding, D. Wang, and T. David, “Novel Organic and Polymeric Materials for Solar Energy,” Energy Procedia, vol.57, pp.79 – 88, 2014.
  • [6]. P. Oelhafen and A. Schuler, “Nanostructured materials for solar energy conversion,” Solar Energy, vol.79, pp.110–121, August. 2005.
  • [7]. R. Pradhan and B. Subudhi, “Design and real-time implementation of a new auto-tuned adaptive MPPT control for a photovoltaic system,” Electrical Power and Energy Systems, vol. 64, pp.792–80, 2015.
  • [8]. S. Daraban, D. Petreus, and C. Morel, “A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading,” Energy, vol.74, pp.374-388, Sep.2014.
  • [9]. I. Stamatescu, I. Făgărășan, G. Stamatescu, N. Arghira, and S.S. Iliescu, “Design and Implementation of a Solar-Tracking Algorithm,” Procedia Engineering, vol.9, pp. 500-507, 2014.
  • [10]. İ. Sefa, M. Demirtas, and İ. Çolak, “Application of one-axis sun tracking system, Energy Conversion and Management, vol. 50, pp. 2709–2718 Nov. 2009.
There are 10 citations in total.

Details

Subjects Engineering
Journal Section Makaleler
Authors

Hayrettin Toylan

Publication Date February 25, 2017
Published in Issue Year 2017 Volume: 2 Issue: 1

Cite

APA Toylan, H. (2017). Performance of Dual Axis Solar Tracking System Using Fuzzy Logic Control: A Case Study in Pinarhisar, Turkey. European Journal of Engineering and Natural Sciences, 2(1), 130-136.
AMA Toylan H. Performance of Dual Axis Solar Tracking System Using Fuzzy Logic Control: A Case Study in Pinarhisar, Turkey. European Journal of Engineering and Natural Sciences. February 2017;2(1):130-136.
Chicago Toylan, Hayrettin. “Performance of Dual Axis Solar Tracking System Using Fuzzy Logic Control: A Case Study in Pinarhisar, Turkey”. European Journal of Engineering and Natural Sciences 2, no. 1 (February 2017): 130-36.
EndNote Toylan H (February 1, 2017) Performance of Dual Axis Solar Tracking System Using Fuzzy Logic Control: A Case Study in Pinarhisar, Turkey. European Journal of Engineering and Natural Sciences 2 1 130–136.
IEEE H. Toylan, “Performance of Dual Axis Solar Tracking System Using Fuzzy Logic Control: A Case Study in Pinarhisar, Turkey”, European Journal of Engineering and Natural Sciences, vol. 2, no. 1, pp. 130–136, 2017.
ISNAD Toylan, Hayrettin. “Performance of Dual Axis Solar Tracking System Using Fuzzy Logic Control: A Case Study in Pinarhisar, Turkey”. European Journal of Engineering and Natural Sciences 2/1 (February 2017), 130-136.
JAMA Toylan H. Performance of Dual Axis Solar Tracking System Using Fuzzy Logic Control: A Case Study in Pinarhisar, Turkey. European Journal of Engineering and Natural Sciences. 2017;2:130–136.
MLA Toylan, Hayrettin. “Performance of Dual Axis Solar Tracking System Using Fuzzy Logic Control: A Case Study in Pinarhisar, Turkey”. European Journal of Engineering and Natural Sciences, vol. 2, no. 1, 2017, pp. 130-6.
Vancouver Toylan H. Performance of Dual Axis Solar Tracking System Using Fuzzy Logic Control: A Case Study in Pinarhisar, Turkey. European Journal of Engineering and Natural Sciences. 2017;2(1):130-6.