BibTex RIS Cite

Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms

Year 2014, Volume: 11 Issue: 4, 299 - 304, 01.12.2014
https://doi.org/10.15197/sabad.1.11.93

Abstract

Fetal period is characterized by the rapid growth and maturation of tissues and organs. There are various alterations in carbohydrate, lipid and protein metabolisms in mother to provide nutrition to fetus. If something is wrong about these metabolisms in mother, this will indirectly affect fetus. So it is essential to elucidate the maternal and fetal carbohydrate, lipid and protein metabolisms in the management of a pregnant woman. Mild fasting hypoglycemia, postprandial hyperglycemia, hyperinsulinemia and increased peripheral insulin resistance are the characteristics of pregnancy. The fetus primarily depends on glucose as the energy source but can also use other substrates such as lactate, keto acids, amino acids, fatty acids and glycogen as energy sources. Proteins are needed as structural components. Alterations in lipid metabolism cause accumulation of maternal fat stores in the early pregnancy in order to enhance lipolysis in the late pregnancy providing glucose and amino acids for fetus while promoting usage of lipids as maternal energy source. Maternal energy metabolism affects fetal energy metabolism both in short and long terms. By the clarification of maternal and fetal energy metabolisms, it may be possible to predict and prevent some diseases of a newborn in the future.

References

  • Butte NF. Carbohydrate and lipid metabolism in pregnan- cy: normal compared with gestational diabetes mellitus. Am J Clin Nutr 2000;71:1256S–61S.
  • Cordero L, Landon MB. Infant of the diabetic mother. Clin Perinatol 1993;20:635-48.
  • Gabbe SG, Quilligan EJ. Fetal carbohydrate metabolism: its clinical importance. Am J Obstet Gynecol 1977;127:92- 103.
  • Catalano PM, Tyzbir ED, Roman NM. Longitudinal chang- es in insulin release and insulin resistance in non-obese pregnant women. Am J Obstet Gynecol 1991;165:1667–72.
  • Catalano PM, Tyzbir ED, Wolfe RR, Roman NM, Amini SB, Sims EAH. Longitudinal changes in basal hepatic glucose production and suppression during insulin infusion in nor- mal pregnant women. Am J Obstet Gynecol 1992;167:913–9.
  • Lesser KB, Carpenter MW. Metabolic changes associated with normal pregnancy and pregnancy complicated by diabetes mellitus. Semin Perinatol 1994;18:399–406.
  • Kühl C. Aetiology of gestational diabetes. Baillieres Clin Obstet Gynaecol 1991;5:279–92.
  • Catalano PM, Tyzbir ED, Wolfe RR, et al. Carbohydrate me- tabolism during pregnancy in control subjects and women with gestational diabetes. Am J Physiol 1993;264:E60–7.
  • Buchanan TA, Metzger BE, Freinkel N. Insulin sensitivity and B-cell responsiveness to glucose during late preg- nancy in lean and moderately obese women with normal glucose tolerance or gestational diabetes. Am J Obstet Gynecol 1990;162:1008–14.
  • Ryan EA, O’Sullivan MJ, Skyler JS. Insulin action during pregnancy: studies with euglycemic clamp technique. Diabetes 1985;34:380–9.
  • Boden G. Fuel metabolism in pregnancy and in gesta- tional diabetes mellitus. Obstet Gynecol Clin North Am 1996;23:1-10.
  • Assel B, Rossi K, Kalhan S. Glucose metabolism during fasting through human pregnancy: comparison of trac- er method with respiratory calorimetry. Am J Physiol 1993;265:E351–6.
  • Phelps RL, Metzger BE, Freinkel N. Carbohydrate metabo- lism in pregnancy. XVII. Diurnal profiles of plasma glu- cose, insulin, free fatty acids, triglycerides, cholesterol, and individual amino acids in late normal pregnancy. Am J Obstet Gynecol 1981;140:730-6.
  • Battaglia FC, Meschia G. Principal substrates of fetal me- tabolism. Physol Rev 1978;58:499-527.
  • Fowden AL, Silver M. Glucose and oxygen metabolism in the fetal foal during late gestation. Am J Physiol 1995;269:R1455-61.
  • Hay WW Jr. Placental transport of nutrients to the fetus. Horm Res 1994;42:215-22.
  • Cowett RM, Farrag HM. Selected principles of perinatal- neonatal glucose metabolism. Semin Neonatol 2004;9:37– 47.
  • Bell GI, Burant CF, Takeda J, Gould GW. Structure and function of mammalian facilitative sugar transporters. J Biol Chem 1993;268:19161-4.
  • Widdas, W. F. Transport mechanisms in the foetus. Brit Med BUZZ1961; 17: 107-11.
  • Hay WW, Jr. Placental-fetal glucose exchange and fe- tal glucose metabolism. Trans Am Clin Climatol Assoc 2006;117:321–39.
  • Simmons RE. Cell glucose transport and glucose handling during fetal and neonatal development. In: Polin RA, Fox WW, editors. Fetal and Neonatal Physiology. Philadelphia: Saunders; 2011: 560–8.
  • Oakley NW, Beard RW, Turner RC. Effect of sustained ma- ternal hyperglycemia on the fetus in normal and diabetic pregnancies. Br Med J 1972;1:466–9.
  • Rao PN, Shashidhar A, Ashok C. In utero fuel homeosta- sis: Lessons for a clinician. Indian J Endocrinol Metab 2013;17:60-8.
  • Fowden AL, Forhead AJ, Silver M, MacDonald AA. Glucose, lactate and oxygen metabolism in the fetal pig during late gestation. Exp Physiol 1997;82:171-82.
  • Sinclair JC. Metabolic rate and temperature control in the newborn. In: Goodwin JW, Gooden LO, Chance GW, editors. Perinatal Medicine. Baltimore: Williams and Wilkins; 1976: 558–77.
  • Fowden AL, Hay WW Jr. The effects of pancreatectomy on the rates of glucose utilization, oxidation and production in the sheep fetus. Q J Exp Physiol 1988;73:973-84.
  • Forhead AJ, Fowden AL The hungry fetus? Role of leptin as a nutritional signal before birth.J Physiol. 2009;587:1145-52.
  • Blackburn ST. Carbohydrate, fat and protein metabolism. In: Blackburn ST, editor. Maternal, fetal, and neonatal physiology. 2nd ed. St Louis: Saunders; 2003: 599–629.
  • Kalhan S, Parimi P. Gluconeogeneis in the fetus and neo- nate. Semin Perinatol 2000;24:94–106.
  • Salameh WA, Mastrogiannis DS. Maternal hyperlipidemia in pregnancy. Clin Obstet Gynecol 1994;37:66-77.
  • Desoye G, Schweditsch MO, Pfeiffer KP, Zechner R, Kostner GM. Correlation of hormones with lipid and lipo- protein levels during normal pregnancy and postpartum. J Clin Endocrinol Metab 1987;64:704-12.
  • Larque E, Ruiz-Palacios M, Koletzko B. Placental regula- tion of fetal nutrient suply. Curr Opin Clin Nutr Matab Care 2013;16(3):292-7.
  • Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev 2000;16:202–10.
  • Crawford MA, Hassam AG, Williams G. Essential fatty ac- ids and fetal brain growth. Lancet. 1976;1:452-3.
  • de Groot RH, Hornstra G, van Houwelingen AC, Rumen F. Effect of linolenic acid supplementation during preg- nancy on maternal and neonatal polyunsaturated fat- ty acid status and pregnancy outcome. Am J Clin Nutr 2004;79:251–60
  • Hendrickse W, Stammers JP, Hull D. The transfer of free fatty acids across the human placenta. Br J Obstet Gynaecol 1985;92:945–53.
  • Symonds ME, Stephenson T. Maternal nutrient restriction and endocrine programming of fetal adipose tissue devel- opment. Biochem Soc Trans 1999;27:97–103.
  • Ramadan WS, Alshiraihi I, Al-karim S. Effect of maternal low protein diet during pregnancy on the fetal liver of rats. Ann Anat 2013;195:68-76.
  • Cetin I, Marconi AM, Corbetta C, et al. Fetal amino ac- ids in normal pregnancies and in pregnancies compli- cated by intrauterine growth retardation. Early Human Development 1992;29:183–6.
  • Bröer S. Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflugers Arch 2002;444:457–66.
  • Verrey F. System L. hHeteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch 2003;445:529–33.
  • Wilkening RB, Boyle DW, Teng C, Meschia G, Battaglia FC. Amino acid uptake by the fetal ovine hindlimb under nor- mal and euglycemic hyperinsulinemic states. Am J Physiol 1994;266:E72–8.
  • Johnson JD, Dunham T, Skipper BJ, Loftfield RB. Protein turnover in diseases of the rat fetus following maternal starvation. Pediatr Res 1986;20:1252–7.
  • Lukaszewski MA, Eberlé D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab 2013 Sep 17. [Epub ahead of print]
  • Blumfield ML, Hure AJ, MacDonald-Wicks LK, et al. Dietary balance during pregnancy is associated with fetal adipos- ity and fat distribution. Am J Clin Nutr 2012;96:1032-41.
  • Karbalaei N, Ghasemi A, Faraji F, Zahediasl S. Comparison of the effect of maternal hypothyroidism on carbohy- drate metabolism in young and aged male offspring in rats. Scand J Clin Lab Invest 2013;73:87-94.
  • Eslamian L, Akbari S, Marsoosi V, Jamal A. Association between fetal overgrowth and metabolic parameters in cord blood of newborns of women with GDM. Minerva Med 2013;104:317-24.
  • Lager S, Powell TL. Regulation of nutrient transport across the placenta. Pregnancy 2012;2012:179827.
  • Malo E, Saukko M, Santaniemi M, et al. Plasma lipid levels and body weight altered by intrauterine growth restric- tion and postnatal fructose diet in adult rats. Pediatr Res 2013;73:155-62.
  • Mukai Y, Kumazawa M, Sato S. Fructose intake during pregnancy up-regulates the expression of maternal and fetal hepatic sterol regulatory element-binding protein- 1c in rats. Endocrine 2013;44:79-86.
  • Cao L, Mao C, Li S, et al. Hepatic insulin signaling chang- es: possible mechanism in prenatal hypoxia-increased susceptibility of fatty liver in adulthood. Endocrinology 2012;153:4955-65.
  • Fowden AL, Forhead AJ Endocrine interactions in the control of fetal growth. Nestle Nutr Inst Workshop Ser 2013;74:91-102.
  • Thorn SR, Sekar SM, Lavezzi JR, et al. A physiological in- crease in insulin suppresses gluconeogenic gene activa- tion in fetal sheep with sustained hypoglycemia. Am J Physiol Regul Integr Comp Physiol 2012;303:R861-9.
  • Thorn SR, Brown LD, Rozance PJ, Hay WW Jr, Friedman JE. Increased hepatic glucose production in fetal sheep with intrauterine growth restriction is not suppressed by insulin. Diabetes 2013;62:65-73.

Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms

Year 2014, Volume: 11 Issue: 4, 299 - 304, 01.12.2014
https://doi.org/10.15197/sabad.1.11.93

Abstract

Fetal dönem, doku ve organların hızlı büyüme ve gelişmesi ile karakterizedir. Anneden fetüse yeterli besin sağlanması için karbonhidrat, lipid ve protein metabolizmalarında birçok değişiklikler görülür. Bunlardaki herhangi bir eksiklik veya yanlışlık fetüsü etkileyecektir. Bu nedenle maternal ve fetal karbonhidrat, lipid ve protein metabolizmalarının açıklanması önemlidir. Gebelikte açlık hipoglisemisi, postprandial hiperglisemi, hiperinsülinemi ve artmış periferal insülin direnci mevcuttur. Fetüs esas enerji kaynağı olarak glukozu kullanır, ama laktat, keto asitler, amino asidler, yağ asidleri ve glikojen de enerji kaynağı olarak kullanılabilir. Fetüs proteinleri de yapıtaşı olarak kullanır. Maternal lipid metabolizmasındaki değişiklikler; gebeliğin erken dönemlerinde maternal yağ depolarını artırırken, geç gebelik dönemlerinde lipolizi artırarak glukoz ve amino asitlerin fetüs için kullanımını sağlar, maternal enerji kaynağı olarak da yağ asitlerinin kullanımını destekler. Maternal enerji metabolizması fetal enerji metabolizmasını kısa ve uzun dönemde etkiler. Bu mekanizmaların aydınlatılması ile gelecekte yenidoğandaki bazı hastalıkların öngörülmesi veya engellenmesi mümkün olabilecektir

References

  • Butte NF. Carbohydrate and lipid metabolism in pregnan- cy: normal compared with gestational diabetes mellitus. Am J Clin Nutr 2000;71:1256S–61S.
  • Cordero L, Landon MB. Infant of the diabetic mother. Clin Perinatol 1993;20:635-48.
  • Gabbe SG, Quilligan EJ. Fetal carbohydrate metabolism: its clinical importance. Am J Obstet Gynecol 1977;127:92- 103.
  • Catalano PM, Tyzbir ED, Roman NM. Longitudinal chang- es in insulin release and insulin resistance in non-obese pregnant women. Am J Obstet Gynecol 1991;165:1667–72.
  • Catalano PM, Tyzbir ED, Wolfe RR, Roman NM, Amini SB, Sims EAH. Longitudinal changes in basal hepatic glucose production and suppression during insulin infusion in nor- mal pregnant women. Am J Obstet Gynecol 1992;167:913–9.
  • Lesser KB, Carpenter MW. Metabolic changes associated with normal pregnancy and pregnancy complicated by diabetes mellitus. Semin Perinatol 1994;18:399–406.
  • Kühl C. Aetiology of gestational diabetes. Baillieres Clin Obstet Gynaecol 1991;5:279–92.
  • Catalano PM, Tyzbir ED, Wolfe RR, et al. Carbohydrate me- tabolism during pregnancy in control subjects and women with gestational diabetes. Am J Physiol 1993;264:E60–7.
  • Buchanan TA, Metzger BE, Freinkel N. Insulin sensitivity and B-cell responsiveness to glucose during late preg- nancy in lean and moderately obese women with normal glucose tolerance or gestational diabetes. Am J Obstet Gynecol 1990;162:1008–14.
  • Ryan EA, O’Sullivan MJ, Skyler JS. Insulin action during pregnancy: studies with euglycemic clamp technique. Diabetes 1985;34:380–9.
  • Boden G. Fuel metabolism in pregnancy and in gesta- tional diabetes mellitus. Obstet Gynecol Clin North Am 1996;23:1-10.
  • Assel B, Rossi K, Kalhan S. Glucose metabolism during fasting through human pregnancy: comparison of trac- er method with respiratory calorimetry. Am J Physiol 1993;265:E351–6.
  • Phelps RL, Metzger BE, Freinkel N. Carbohydrate metabo- lism in pregnancy. XVII. Diurnal profiles of plasma glu- cose, insulin, free fatty acids, triglycerides, cholesterol, and individual amino acids in late normal pregnancy. Am J Obstet Gynecol 1981;140:730-6.
  • Battaglia FC, Meschia G. Principal substrates of fetal me- tabolism. Physol Rev 1978;58:499-527.
  • Fowden AL, Silver M. Glucose and oxygen metabolism in the fetal foal during late gestation. Am J Physiol 1995;269:R1455-61.
  • Hay WW Jr. Placental transport of nutrients to the fetus. Horm Res 1994;42:215-22.
  • Cowett RM, Farrag HM. Selected principles of perinatal- neonatal glucose metabolism. Semin Neonatol 2004;9:37– 47.
  • Bell GI, Burant CF, Takeda J, Gould GW. Structure and function of mammalian facilitative sugar transporters. J Biol Chem 1993;268:19161-4.
  • Widdas, W. F. Transport mechanisms in the foetus. Brit Med BUZZ1961; 17: 107-11.
  • Hay WW, Jr. Placental-fetal glucose exchange and fe- tal glucose metabolism. Trans Am Clin Climatol Assoc 2006;117:321–39.
  • Simmons RE. Cell glucose transport and glucose handling during fetal and neonatal development. In: Polin RA, Fox WW, editors. Fetal and Neonatal Physiology. Philadelphia: Saunders; 2011: 560–8.
  • Oakley NW, Beard RW, Turner RC. Effect of sustained ma- ternal hyperglycemia on the fetus in normal and diabetic pregnancies. Br Med J 1972;1:466–9.
  • Rao PN, Shashidhar A, Ashok C. In utero fuel homeosta- sis: Lessons for a clinician. Indian J Endocrinol Metab 2013;17:60-8.
  • Fowden AL, Forhead AJ, Silver M, MacDonald AA. Glucose, lactate and oxygen metabolism in the fetal pig during late gestation. Exp Physiol 1997;82:171-82.
  • Sinclair JC. Metabolic rate and temperature control in the newborn. In: Goodwin JW, Gooden LO, Chance GW, editors. Perinatal Medicine. Baltimore: Williams and Wilkins; 1976: 558–77.
  • Fowden AL, Hay WW Jr. The effects of pancreatectomy on the rates of glucose utilization, oxidation and production in the sheep fetus. Q J Exp Physiol 1988;73:973-84.
  • Forhead AJ, Fowden AL The hungry fetus? Role of leptin as a nutritional signal before birth.J Physiol. 2009;587:1145-52.
  • Blackburn ST. Carbohydrate, fat and protein metabolism. In: Blackburn ST, editor. Maternal, fetal, and neonatal physiology. 2nd ed. St Louis: Saunders; 2003: 599–629.
  • Kalhan S, Parimi P. Gluconeogeneis in the fetus and neo- nate. Semin Perinatol 2000;24:94–106.
  • Salameh WA, Mastrogiannis DS. Maternal hyperlipidemia in pregnancy. Clin Obstet Gynecol 1994;37:66-77.
  • Desoye G, Schweditsch MO, Pfeiffer KP, Zechner R, Kostner GM. Correlation of hormones with lipid and lipo- protein levels during normal pregnancy and postpartum. J Clin Endocrinol Metab 1987;64:704-12.
  • Larque E, Ruiz-Palacios M, Koletzko B. Placental regula- tion of fetal nutrient suply. Curr Opin Clin Nutr Matab Care 2013;16(3):292-7.
  • Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev 2000;16:202–10.
  • Crawford MA, Hassam AG, Williams G. Essential fatty ac- ids and fetal brain growth. Lancet. 1976;1:452-3.
  • de Groot RH, Hornstra G, van Houwelingen AC, Rumen F. Effect of linolenic acid supplementation during preg- nancy on maternal and neonatal polyunsaturated fat- ty acid status and pregnancy outcome. Am J Clin Nutr 2004;79:251–60
  • Hendrickse W, Stammers JP, Hull D. The transfer of free fatty acids across the human placenta. Br J Obstet Gynaecol 1985;92:945–53.
  • Symonds ME, Stephenson T. Maternal nutrient restriction and endocrine programming of fetal adipose tissue devel- opment. Biochem Soc Trans 1999;27:97–103.
  • Ramadan WS, Alshiraihi I, Al-karim S. Effect of maternal low protein diet during pregnancy on the fetal liver of rats. Ann Anat 2013;195:68-76.
  • Cetin I, Marconi AM, Corbetta C, et al. Fetal amino ac- ids in normal pregnancies and in pregnancies compli- cated by intrauterine growth retardation. Early Human Development 1992;29:183–6.
  • Bröer S. Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflugers Arch 2002;444:457–66.
  • Verrey F. System L. hHeteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch 2003;445:529–33.
  • Wilkening RB, Boyle DW, Teng C, Meschia G, Battaglia FC. Amino acid uptake by the fetal ovine hindlimb under nor- mal and euglycemic hyperinsulinemic states. Am J Physiol 1994;266:E72–8.
  • Johnson JD, Dunham T, Skipper BJ, Loftfield RB. Protein turnover in diseases of the rat fetus following maternal starvation. Pediatr Res 1986;20:1252–7.
  • Lukaszewski MA, Eberlé D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab 2013 Sep 17. [Epub ahead of print]
  • Blumfield ML, Hure AJ, MacDonald-Wicks LK, et al. Dietary balance during pregnancy is associated with fetal adipos- ity and fat distribution. Am J Clin Nutr 2012;96:1032-41.
  • Karbalaei N, Ghasemi A, Faraji F, Zahediasl S. Comparison of the effect of maternal hypothyroidism on carbohy- drate metabolism in young and aged male offspring in rats. Scand J Clin Lab Invest 2013;73:87-94.
  • Eslamian L, Akbari S, Marsoosi V, Jamal A. Association between fetal overgrowth and metabolic parameters in cord blood of newborns of women with GDM. Minerva Med 2013;104:317-24.
  • Lager S, Powell TL. Regulation of nutrient transport across the placenta. Pregnancy 2012;2012:179827.
  • Malo E, Saukko M, Santaniemi M, et al. Plasma lipid levels and body weight altered by intrauterine growth restric- tion and postnatal fructose diet in adult rats. Pediatr Res 2013;73:155-62.
  • Mukai Y, Kumazawa M, Sato S. Fructose intake during pregnancy up-regulates the expression of maternal and fetal hepatic sterol regulatory element-binding protein- 1c in rats. Endocrine 2013;44:79-86.
  • Cao L, Mao C, Li S, et al. Hepatic insulin signaling chang- es: possible mechanism in prenatal hypoxia-increased susceptibility of fatty liver in adulthood. Endocrinology 2012;153:4955-65.
  • Fowden AL, Forhead AJ Endocrine interactions in the control of fetal growth. Nestle Nutr Inst Workshop Ser 2013;74:91-102.
  • Thorn SR, Sekar SM, Lavezzi JR, et al. A physiological in- crease in insulin suppresses gluconeogenic gene activa- tion in fetal sheep with sustained hypoglycemia. Am J Physiol Regul Integr Comp Physiol 2012;303:R861-9.
  • Thorn SR, Brown LD, Rozance PJ, Hay WW Jr, Friedman JE. Increased hepatic glucose production in fetal sheep with intrauterine growth restriction is not suppressed by insulin. Diabetes 2013;62:65-73.
There are 54 citations in total.

Details

Primary Language English
Journal Section Review Article
Authors

Özlem Şengül This is me

Suat Dede This is me

Publication Date December 1, 2014
Published in Issue Year 2014 Volume: 11 Issue: 4

Cite

APA Şengül, Ö., & Dede, S. (2014). Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms. European Journal of General Medicine, 11(4), 299-304. https://doi.org/10.15197/sabad.1.11.93
AMA Şengül Ö, Dede S. Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms. European Journal of General Medicine. December 2014;11(4):299-304. doi:10.15197/sabad.1.11.93
Chicago Şengül, Özlem, and Suat Dede. “Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms”. European Journal of General Medicine 11, no. 4 (December 2014): 299-304. https://doi.org/10.15197/sabad.1.11.93.
EndNote Şengül Ö, Dede S (December 1, 2014) Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms. European Journal of General Medicine 11 4 299–304.
IEEE Ö. Şengül and S. Dede, “Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms”, European Journal of General Medicine, vol. 11, no. 4, pp. 299–304, 2014, doi: 10.15197/sabad.1.11.93.
ISNAD Şengül, Özlem - Dede, Suat. “Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms”. European Journal of General Medicine 11/4 (December 2014), 299-304. https://doi.org/10.15197/sabad.1.11.93.
JAMA Şengül Ö, Dede S. Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms. European Journal of General Medicine. 2014;11:299–304.
MLA Şengül, Özlem and Suat Dede. “Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms”. European Journal of General Medicine, vol. 11, no. 4, 2014, pp. 299-04, doi:10.15197/sabad.1.11.93.
Vancouver Şengül Ö, Dede S. Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms. European Journal of General Medicine. 2014;11(4):299-304.