Review
BibTex RIS Cite

Unmanned Aerial Vehicles for Civil Engineering: Current Practises and Regulations

Year 2019, , 925 - 932, 31.08.2019
https://doi.org/10.31590/ejosat.565499

Abstract

Lately, Unmanned Aerial Vehicles (UAVs) have been widely preferred in construction industry, and their applications are changing the way construction companies work. Yet, the productivity gap between manufacturing and construction is very high. With the help of UAV’s, construction productivity can be developed. UAV’s has may benefits for the civil engineering discipline and many various applications from inspection of any on-site activity to personal safety operations in construction projects. Site progress can be easily tracked by them and furthermore surveying can be done very fast withous having people at site where might be dangerous. Eventhough current practices of UAV’s use are limited, in the near future this will change not only in construction industry. Drones are gaining popularity not only locally but globally among the stakeholders including clients, contractors and consultant engineers for assessing complex and and detailed situations. Use of UAV’s enables project management professionals understand the problems,making decisions fast and taking required immediate actions. However, state and local regulations are limiting their usages and efficiencies. Construction companies must be aware of the regulations and risks in order to apply UAV technology to their projects. This paper aims to investigate the current practices of UAVs in construction industry by revieweing the publishes academic papers. Furthermore the different regulations set regarding use of drones in different countries different countries and regions such as USA, EU,China and Turkey are also investigated. This research also comprises some legal recommendations to the Turkish authorities which might be beneficial to establish a solid structure for UAV’s.

References

  • FARBER, Hillary B. Eyes in the sky: constitutional and regulatory approaches to domestic drone deployment. 2014.
  • SIEBERT, Sebastian; TEIZER, Jochen. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 2014, 41: 1-14.
  • WANG, George, et al. Risk considerations in the use of unmanned aerial vehicles in the construction industry. 2016.
  • BARMPOUNAKIS, Emmanouil N.; VLAHOGIANNI, Eleni I.; GOLIAS, John C. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges. International Journal of Transportation Science and Technology, 2016, 5.3: 111-122.
  • CHANGALI, S.; MOHAMMAD, A.; VAN NIEUWL, M. The construction productivity imperative. McKinsey & Company. 2015.
  • DUPONT, Quentin FM, et al. Potential Applications of UAV along the Construction's Value Chain. Procedia Engineering, 2017, 182: 165-173.
  • FLOREANO D, WOOD RJ. Science, technology and the future of small autonomous drones. Nature 2015; 521:460–466.
  • NEX, Francesco; REMONDINO, Fabio. UAV for 3D mapping applications: a review. Applied Geomatics, 2014, 6.1: 1-15.
  • CHOI, Sungsuk; KIM, Eungkon. Image acquisition system for construction inspection based on small unmanned aerial vehicle. In: Advanced Multimedia and Ubiquitous Engineering. Springer, Berlin, Heidelberg, 2015. p. 273-280.
  • Skycatch Inc.'s, https://www.skycatch.com/ (retrieved 20.06.2017).
  • CALDAS, Carlos H.; SOIBELMAN, Lucio; GASSER, Les. Methodology for the integration of project documents in model-based information systems. Journal of Computing in Civil Engineering, 2005, 19.1: 25-33.
  • GOEDERT, James D.; MEADATI, Pavan. Integrating construction process documentation into building information modeling. Journal of construction engineering and management, 2008, 134.7: 509-516.
  • KOON M. Construction of Sacramento Kings arena using award-winning drone monitoring system developed at Illinois; 2016.
  • LAVOIE, M. Caterpillar Inc. and Redbird to Advance Work Site Intelligence with Drone Analytics. Caterpillar; 2015.
  • WAKEFIELD, J. Tomorrow's Buildings: Construction industry goes robotic. BBC Technology; 2016.
  • CHEN, Jessie YC. UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics, 2010, 53.8: 940-950.
  • CHEUNG, Carol; GROCHOLSKY, Benjamin. UAV-UGV Collaboration with a PackBot UGV and Raven SUAV for Pursuit and Tracking of a Dynamic Target. In: SPIE Defense and Security Symposium. International Society for Optics and Photonics, 2008. p. 696216-696216.
  • MORGENTHAL, G.; HALLERMANN, N. Quality assessment of Unmanned Aerial Vehicle (UAV) based visual inspection of structures. Advances in Structural Engineering, 2014, 17.3: 289-302.
  • DÍAZ-VILARIÑO, L., et al. Determining the limits of unmanned aerial photogrammetry for the evaluation of road runoff. Measurement, 2016, 85: 132-141.
  • FINN, Rachel L.; WRIGHT, David. Unmanned aircraft systems: Surveillance, ethics and privacy in civil applications. Computer Law & Security Review, 2012, 28.2: 184-194.
  • WILLIAMS, Victoria. Privacy impact & the social aspects of public surveillance. Covert Policing Review 2008.
  • DE MELO, ROSENEIA Rodrigues Santos, et al. Applicability of unmanned aerial system (UAS) for safety inspection on construction sites. Safety science, 2017, 98: 174-185.
  • DIX, A., FINLAY, J., ABOWD, G., and BEALE, R. (2004). “Human-computer interaction”, (3rd ed.), Prentice-Hall, Inc., 2004.
  • HEREDIA, Guillermo, et al. Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors. Sensors, 2009, 9.9: 7566-7579.
  • OKRENT, Mark. Civil UAV activity within the framework of European Commission research. In: Proc. of AIAA 3 rd Unmanned Unlimited Technical Conference. 2004. p. 1-12.
  • INGHAM, L. A.; JONES, Thomas; MANESCHIJN, Anton. Considerations for UAV design and operation in South African airspace. The aeronautical journal, 2006, 110.1112: 695-701.

İnşaat Mühendisliğinde İnsansız Hava Araçları: Mevcut Düzenlemeler ve Uygulamalar

Year 2019, , 925 - 932, 31.08.2019
https://doi.org/10.31590/ejosat.565499

Abstract

Son zamanlarda, İnsansız Hava Araçları (İHA) inşaat endüstrisinde yaygın olarak tercih edilmiştir ve uygulamaları inşaat şirketlerinin çalışma şeklini değiştirmektedir. Ancak, üretim ve inşaat arasındaki verimlilik açığı çok yüksektir. UAV’lerin yardımıyla, inşaat verimliliği geliştirilebilir. İHA inşaat mühendisliği disiplini ve şantiye faaliyetlerinin denetlenmesinden inşaat projelerinde kişisel güvenlik operasyonlarına kadar birçok uygulama için fayda sağlayabilir. Sahadaki ilerlemeler onlar tarafından kolayca izlenebilir ve ayrıca sahadaki kişilerin tehlikeli olabileceği yerlerde bulunan kişilerle çok hızlı bir şekilde araştırma yapılabilir. Nihayet UAV’ın kullanımına ilişkin uygulamalar sınırlıdır, ancak yakın gelecekte bu sadece inşaat sektöründe değişmeyecektir. Dronlar, hem yerel hem de global olarak, karmaşık ve ve detaylı durumları değerlendirmek için müşteriler, müteahhitler ve danışman mühendisler dahil paydaşlar arasında popülerlik kazanıyor. UAV’lerin kullanımı, proje yönetimi uzmanlarının sorunları anlamasını, kararları hızlı bir şekilde almasını ve gerekli acil önlemleri almasını sağlar. Bununla birlikte, eyalet düzenlemeleri ve yerel düzenlemeler kullanımlarını ve verimliliklerini sınırlamaktadır. İnşaat şirketleri, İHA teknolojisini projelerine uygulamak için düzenlemelerin ve risklerin farkında olmalıdır. Bu makale, İHA'ların inşaat sektöründeki güncel uygulamalarını yayınlayarak akademik makaleleri inceleyerek incelemeyi amaçlamaktadır. Ayrıca, farklı ülkelerde dronların kullanımıyla ilgili farklı düzenlemeler ABD, AB, Çin ve Türkiye gibi farklı ülke ve bölgelerde de incelenmektedir. Bu araştırma aynı zamanda, Türk makamlarına İHA’lar için sağlam bir yapı oluşturmada faydalı olabilecek bazı yasal öneriler de içermektedir.

References

  • FARBER, Hillary B. Eyes in the sky: constitutional and regulatory approaches to domestic drone deployment. 2014.
  • SIEBERT, Sebastian; TEIZER, Jochen. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 2014, 41: 1-14.
  • WANG, George, et al. Risk considerations in the use of unmanned aerial vehicles in the construction industry. 2016.
  • BARMPOUNAKIS, Emmanouil N.; VLAHOGIANNI, Eleni I.; GOLIAS, John C. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges. International Journal of Transportation Science and Technology, 2016, 5.3: 111-122.
  • CHANGALI, S.; MOHAMMAD, A.; VAN NIEUWL, M. The construction productivity imperative. McKinsey & Company. 2015.
  • DUPONT, Quentin FM, et al. Potential Applications of UAV along the Construction's Value Chain. Procedia Engineering, 2017, 182: 165-173.
  • FLOREANO D, WOOD RJ. Science, technology and the future of small autonomous drones. Nature 2015; 521:460–466.
  • NEX, Francesco; REMONDINO, Fabio. UAV for 3D mapping applications: a review. Applied Geomatics, 2014, 6.1: 1-15.
  • CHOI, Sungsuk; KIM, Eungkon. Image acquisition system for construction inspection based on small unmanned aerial vehicle. In: Advanced Multimedia and Ubiquitous Engineering. Springer, Berlin, Heidelberg, 2015. p. 273-280.
  • Skycatch Inc.'s, https://www.skycatch.com/ (retrieved 20.06.2017).
  • CALDAS, Carlos H.; SOIBELMAN, Lucio; GASSER, Les. Methodology for the integration of project documents in model-based information systems. Journal of Computing in Civil Engineering, 2005, 19.1: 25-33.
  • GOEDERT, James D.; MEADATI, Pavan. Integrating construction process documentation into building information modeling. Journal of construction engineering and management, 2008, 134.7: 509-516.
  • KOON M. Construction of Sacramento Kings arena using award-winning drone monitoring system developed at Illinois; 2016.
  • LAVOIE, M. Caterpillar Inc. and Redbird to Advance Work Site Intelligence with Drone Analytics. Caterpillar; 2015.
  • WAKEFIELD, J. Tomorrow's Buildings: Construction industry goes robotic. BBC Technology; 2016.
  • CHEN, Jessie YC. UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics, 2010, 53.8: 940-950.
  • CHEUNG, Carol; GROCHOLSKY, Benjamin. UAV-UGV Collaboration with a PackBot UGV and Raven SUAV for Pursuit and Tracking of a Dynamic Target. In: SPIE Defense and Security Symposium. International Society for Optics and Photonics, 2008. p. 696216-696216.
  • MORGENTHAL, G.; HALLERMANN, N. Quality assessment of Unmanned Aerial Vehicle (UAV) based visual inspection of structures. Advances in Structural Engineering, 2014, 17.3: 289-302.
  • DÍAZ-VILARIÑO, L., et al. Determining the limits of unmanned aerial photogrammetry for the evaluation of road runoff. Measurement, 2016, 85: 132-141.
  • FINN, Rachel L.; WRIGHT, David. Unmanned aircraft systems: Surveillance, ethics and privacy in civil applications. Computer Law & Security Review, 2012, 28.2: 184-194.
  • WILLIAMS, Victoria. Privacy impact & the social aspects of public surveillance. Covert Policing Review 2008.
  • DE MELO, ROSENEIA Rodrigues Santos, et al. Applicability of unmanned aerial system (UAS) for safety inspection on construction sites. Safety science, 2017, 98: 174-185.
  • DIX, A., FINLAY, J., ABOWD, G., and BEALE, R. (2004). “Human-computer interaction”, (3rd ed.), Prentice-Hall, Inc., 2004.
  • HEREDIA, Guillermo, et al. Multi-unmanned aerial vehicle (UAV) cooperative fault detection employing differential global positioning (DGPS), inertial and vision sensors. Sensors, 2009, 9.9: 7566-7579.
  • OKRENT, Mark. Civil UAV activity within the framework of European Commission research. In: Proc. of AIAA 3 rd Unmanned Unlimited Technical Conference. 2004. p. 1-12.
  • INGHAM, L. A.; JONES, Thomas; MANESCHIJN, Anton. Considerations for UAV design and operation in South African airspace. The aeronautical journal, 2006, 110.1112: 695-701.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sadık Alper Yıldızel 0000-0001-5702-807X

Gökhan Calış 0000-0001-7196-9407

Publication Date August 31, 2019
Published in Issue Year 2019

Cite

APA Yıldızel, S. A., & Calış, G. (2019). Unmanned Aerial Vehicles for Civil Engineering: Current Practises and Regulations. Avrupa Bilim Ve Teknoloji Dergisi(16), 925-932. https://doi.org/10.31590/ejosat.565499