Conference Paper
BibTex RIS Cite

Valorisation of Dune Sand and Wase Brick Filler in Elaboration of Cellular Concrete: Mechanical and Thermal Properties

Year 2017, Issue: Özel Sayı - Special Issue, 52 - 56, 31.12.2017

Abstract

The aim of this work is both to enhance the
dune sand in the production of lightweight concrete with local resources, but
also enhances the performance of the sandcrete by incorporating fines mineral
as fines from waste of brick
. Different parameters were studied, in which the quantity of
substitution of fines in the dune sand, the proportions substitutions of lime
in the cement, the dosage of expansive agent. The result shows that it is
possible to producing lightweight concrete suited to the hot and arid
environment with an acceptable heat insulation and sufficient compressive
strength. The greatest introduced porosity and lowest density are reached from
composition without lime and with 0.5 % Al. 

References

  • I. K. Cisse, M. Laquerbe. Mechanical characterization of filler sandcretes with rice husk ash additions : Study applied of Senegal. Cement and Concrete Research 30; 2000 ; 13-18.
  • A. S. Al-Harthy, M. Abdelhalim, R. Taha, K. S. Aljabri. The properties of concrete made with fine dune sand. Construction and Building Material 21; 2007 ; 1803-1808.
  • H. Wajahat, Mirza, Solman, I. Al- Noury. Utilisation of Saoudi sands for aerated concrete production. The International Journal of Cement and Composites and Lightweight Concrete. Volume 8, number 2; May 1986.
  • N. Narayanan, K. Ramamurthy. Structure and properties of aerated concrete: a review. Cement & Concrete Composites 22 ; 2000 ; 321-329.
  • R. Cabrillac, B. Fiorio, A. Liss Beaucour, H. Dumontet, S. Ortola. Experimental study of the mechanical anisotropy of aerated concretes and of the adjustment parameters of the introduced porosity. Construction and Building Materials 20 ; 2006 ; 286-295.
  • Shrivastava OP. Lightweight concrete – a review. Indian Concrete Journal 51; 1977; 10-23.
  • FC. McCormick. Rational proportioning of performed foam cellular concrete. ACI Material Journal 64 ; 1967 ; 104-109.
  • C. Guegan, P. Legras, J.F. Mazzoleni, C. Colin, T. Breiner, N. Foussier. Mémento du béton cellulaire. Grouppe Eyrolle; 2005.
  • P. Lawrance, M. Cyr, E. Ringot. Mineral admixtures in mortars effect of type, amount and fineness of fine constituents on compressive strength. Cement and Concrete Research 35; 2005 ; 1092-1105.
  • M. Cyr, P. Lawrance, E. Ringot. Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cement and Concrete Research 36; 2006 ; 264-277.
  • U. Chinje Melo, N. Billong. Activité pouzzolanique des déchets de briques et tuiles cuites. African Journal of Science and Technology, Science and Engineering Serie ; Volume 5 ; numéro 1 ; pp 92- 100.
  • KL. Watson, NB Eden, JR Farrant. Autoclaved aerated mateials from slate powder and portland cement. Precast concrete ; 1977 ; 81-85.
  • TG. Richard. Low temperature behavior of cellular concrete. J Am Conc Inst ; 47 ; 1977 ; 173-178.
  • RC. Valore. Insulation concrete. J Am Conc Inst ; 28 ; 1956 ; 509-532.
  • JL. Kass, Allen D. Campbell. Functional classification of lightweight concrete. Matériaux et Construction ; Volume 5 ; N° 27 ; pp 171-172.

Valorisation of Dune Sand and Wase Brick Filler in Elaboration of Cellular Concrete: Mechanical and Thermal Properties

Year 2017, Issue: Özel Sayı - Special Issue, 52 - 56, 31.12.2017

Abstract

The aim of this work is both to enhance the dune sand in the production of lightweight concrete with local resources, but also
enhances the performance of the sandcrete by incorporating fines mineral as fines from waste of brick. Different parameters were
studied, in which the quantity of substitution of fines in the dune sand, the proportions substitutions of lime in the cement, the dosage
of expansive agent. The result shows that it is possible to producing lightweight concrete suited to the hot and arid environment with
an acceptable heat insulation and sufficient compressive strength. The greatest introduced porosity and lowest density are reached
from composition without lime and with 0.5 % Al. 

References

  • I. K. Cisse, M. Laquerbe. Mechanical characterization of filler sandcretes with rice husk ash additions : Study applied of Senegal. Cement and Concrete Research 30; 2000 ; 13-18.
  • A. S. Al-Harthy, M. Abdelhalim, R. Taha, K. S. Aljabri. The properties of concrete made with fine dune sand. Construction and Building Material 21; 2007 ; 1803-1808.
  • H. Wajahat, Mirza, Solman, I. Al- Noury. Utilisation of Saoudi sands for aerated concrete production. The International Journal of Cement and Composites and Lightweight Concrete. Volume 8, number 2; May 1986.
  • N. Narayanan, K. Ramamurthy. Structure and properties of aerated concrete: a review. Cement & Concrete Composites 22 ; 2000 ; 321-329.
  • R. Cabrillac, B. Fiorio, A. Liss Beaucour, H. Dumontet, S. Ortola. Experimental study of the mechanical anisotropy of aerated concretes and of the adjustment parameters of the introduced porosity. Construction and Building Materials 20 ; 2006 ; 286-295.
  • Shrivastava OP. Lightweight concrete – a review. Indian Concrete Journal 51; 1977; 10-23.
  • FC. McCormick. Rational proportioning of performed foam cellular concrete. ACI Material Journal 64 ; 1967 ; 104-109.
  • C. Guegan, P. Legras, J.F. Mazzoleni, C. Colin, T. Breiner, N. Foussier. Mémento du béton cellulaire. Grouppe Eyrolle; 2005.
  • P. Lawrance, M. Cyr, E. Ringot. Mineral admixtures in mortars effect of type, amount and fineness of fine constituents on compressive strength. Cement and Concrete Research 35; 2005 ; 1092-1105.
  • M. Cyr, P. Lawrance, E. Ringot. Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cement and Concrete Research 36; 2006 ; 264-277.
  • U. Chinje Melo, N. Billong. Activité pouzzolanique des déchets de briques et tuiles cuites. African Journal of Science and Technology, Science and Engineering Serie ; Volume 5 ; numéro 1 ; pp 92- 100.
  • KL. Watson, NB Eden, JR Farrant. Autoclaved aerated mateials from slate powder and portland cement. Precast concrete ; 1977 ; 81-85.
  • TG. Richard. Low temperature behavior of cellular concrete. J Am Conc Inst ; 47 ; 1977 ; 173-178.
  • RC. Valore. Insulation concrete. J Am Conc Inst ; 28 ; 1956 ; 509-532.
  • JL. Kass, Allen D. Campbell. Functional classification of lightweight concrete. Matériaux et Construction ; Volume 5 ; N° 27 ; pp 171-172.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Damene Zineb This is me

Goual Mohammed Sayah This is me

Saiti Issam This is me

Publication Date December 31, 2017
Published in Issue Year 2017 Issue: Özel Sayı - Special Issue

Cite

APA Zineb, D., Sayah, G. M., & Issam, S. (2017). Valorisation of Dune Sand and Wase Brick Filler in Elaboration of Cellular Concrete: Mechanical and Thermal Properties. Avrupa Bilim Ve Teknoloji Dergisi(Özel Sayı - Special Issue), 52-56.