Review
BibTex RIS Cite

NiTiHf-based high temperature shape memory alloys

Year 2018, Issue: 14, 110 - 122, 31.12.2018
https://doi.org/10.31590/ejosat.431702

Abstract

Shape memory alloys are metallic smart materials that have been currently used in many industries including biomedical, aerospace, electronics, construction, oil-gas and automobile and their application areas are predicted to be increased in future. Industries such as aerospace, oil-gas and automobile requires high transformation temperatures (>100 oC ) whereas low transformation temperatures are sufficient in biomedical and electronics. Thus, NiTi alloys are not good candidates for high temperature applications due to their low transformation temperatures. In this review, recent developments on research and application of NiTiHf-based high temperature shape memory alloys are discussed. On the other hand, limitations of NiTiHf-based high temperature shape memory alloys and studies to overcome those limitations are commented.

References

  • Wayman, C.M., Otsuka, K.1998. Shape Memory Materials, Cambridge University Press.
  • Noebe RD, Biles T and Padula SA. 2007. ‘NiTi-based high-temperature shape-memory alloys: properties, prospects, and potential applications’, in ‘Advanced structural materials: properties, design optimization, and applications’, (ed. W. O. Soboyejo and T. S.Srivatsan); New York, Taylor & Francis Group.
  • LeBlanc L. 2001. ‘Part I – ‘‘Smart metals’’ providing actuation, sealing, and completion functions downhole’, Offshore.61 (12), 58.
  • LeBlanc L.2002. ‘Part II – ‘‘Smart metals’’ providing actuation, sealing, and completion functions downhole’, Offshore.62 (1), 54.
  • Song G, Ma N and Li HN. 2006. ‘Applications of shape memory alloys in civil structures’, Eng. Struct..28, (9), 1266–1274.
  • Van Humbeeck J. 1999. ‘Non-medical applications of shape memory alloys’, Mater. Sci. Eng. A, A273, 134–148.
  • Petrini L and Migliavacca F.2011. ‘Biomedical applications of shape memory alloys’, J. Metall., 501483.
  • El Feninat F, Laroche G, Fiset M and Mantovani D. 2002. ‘Shape memory materials for biomedical applications’, Adv. Eng. Mater.4, (3), 91–104.
  • Firstov GS, Van Humbeeck J and Koval YN.2006. ‘High temperature shape memory alloys problems and prospects’, J. Intell. Mater. Syst. Struct.17, (12), 1041–1047.
  • Karaca HE, Kaya I, Tobe H, Basaran B, Nagasako M, Kainuma R, Chumlyakov YI.2013. ‘Shape memory behavior of high strength Ni54Ti46 alloys’, Mater. Sci. Eng. A. A580, 66–70.
  • Otsuka K and Ren X.2005 ‘Physical metallurgy of Ti-Ni-based shape memory alloys’, Prog. Mater. Sci. 50, (5), 511–678.
  • Ma J, Karaman I and Noebe RD.2010. ‘High temperature shape memory alloys’, Int. Mater. Rev. 55, (5), 257–315.
  • Kockar B, Karaman I, Kim JI and Chumlyakov YI.2006. ‘A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys’, Scr. Mater. 54, (12), 2203–2208.
  • Meng XL, Cai W, Wang LM, Zheng YF, Zhao LC and Zhou LM. 2001. ‘Microstructure of stress-induced martensite in a Ti- Ni-Hf high temperature shape memory alloy’, Scr. Mater..45, (10), 1177–1182.
  • Meng XL, Cai W, Fu YD, Li QF, Zhang JX and Zhao LC.2008. ‘Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy’, Intermetallics. 16, (5), 698–705.
  • Meng XL, Cai W, Chen F and Zhao LC.2006. ‘Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy’, Scr. Mater. 54, 1599–1604.
  • Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD and Chumlyakov YI. 2013. ‘Effects of nanoprecipitation on the shape memory and material propertiesof an Ni-rich NiTiHf high temperature shape memory alloy’, Acta Mater., 61, (19), 7422–7431.
  • Santamarta R, Arro´ R, Pons J, Evirgen A, Karaman I, Karaca HE and Noebe RD.2013. ‘TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni– Ti–Hf and Ni–Ti–Zr shape memory alloys’, Acta Mater. 61,(16), 6191–6206.
  • Karaca HE, Saghaian SM, Basaran B, Bigelow GS, Noebe RD and Chumlyakov YI2011. ‘Compressive response of nickel-rich NiTiHf high-temperature shape memory single crystals along the [1 1 1] orientation’, Scr. Mater. 65, (7), 577–580.
  • Karaca,H.E.,Acar,E.,Tobe,H. and Saghaian,S.M.2014. ”NiTiHf-based shape memory alloys”, Mater. Sci. Technol., 30;1530–1544.
  • Acar E, Karaca HE, Basaran B, Yang F, Mills MJ, Noebe RD and Chumlyakov YI.2013. ‘Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals’, Mater. Sci. Eng. A. A573, 161–165.
  • Acar E, Karaca HE, Tobe H, Noebe RD and Chumlyakov YI.2013. ‘Characterization of the shape memory properties of a Ni45?3Ti39?7Hf10Pd5 alloy’, J. Alloys Compd. 578, 297–302.
  • Karaca HE, Acar E, Basaran B, Noebe RD, Bigelow GS, Garg A, Yang F, Mills MJ and Chumlyakov YI.2012. ‘Effects of aging on [111] oriented NiTiHfPd single crystals under compression’, Scr. Mater.67, (7–8), 728–731.
  • Acar E, Ozbulut OE and Karaca HE. 2015. Experimental investigation and modeling of the loading rate and temperature dependent superelastic response of a high performance shape-memory alloy, Smart Mater. Struct., (24/7), 75020.
  • Acar E. 2015. Dynamic mechanical response of a Ni45. 7Ti29. 3Hf20Pd5 alloy, Materiaşs Science and Engineering A, (633) 169-175.
  • Karaca HE, Acar E, Ded GS, Basaran B, Tobe H, Noebe RD, Bigelow G and Chumlyakov YI.2013. ‘Shape memory behavior of high strength NiTiHfPd polycrystalline alloys’, ActaMater. 61, (13), 5036–5049.
  • Karaca HE, Acar E, Basaran B, Noebe RD and Chumlyakov YI.2012. ‘Superelastic response and damping capacity of ultrahigh-strength [111]-oriented NiTiHfPd single crystals’, Scr. Mater. 67, (5), 447–450.
  • Kim HY, Jinguu T, Nam TH and Miyazaki S.2011. ‘Cold workability and shape memory properties of novel Ti–Ni–Hf–Nb high-temperature shape memory alloys’, Scr. Mater. 65, (9), 846–849.
  • Liang XL, Chen Y, Shen HM, Zhang ZF, Li W and Wang YN.2001. ‘Thermal cycling stability and two-way shape memory effect of Ni-Cu-Ti-Hf alloys’, Solid State Commun. 119, (6), 381–385.
  • Hsieh SF and Wu SK.2000. ‘Martensitic transformation of quaternary Ti50?5-XNi49?5ZrX/2HfX/2 (X50–20 at.%) shape memory alloys’, Mater. Charact. 45, (2), 143–152.
  • Besseghini S, Villa E and Tuissi A.1999 ‘Ni-Ti-Hf shape memory alloy: effect of aging and thermal cycling’, Mater. Sci. Eng. A. A273–A275, 390–394.
  • Angst DR, Thoma PE and Kao MY.1995. ‘The effect of Hafnium content on the transformation temperatures of Ni49Ti51-xHfx shape memory alloy’, J. Phys. IV, Colloq. C8, 747–752.
  • Abu Judom D, Thoma PE, Kao MY and Angst DR.1992. ‘High transformation temperature shape memory alloy’, US patent 5,114,504.
  • Wang YQ, Zheng YF, Cai W and Zhao LC.1999. ‘The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy’, Scr. Mater. 40, (12), 1327–1331.
  • Zarinejad M and Liu Y.2010. ‘Dependence of transformation temperatures of shape memory alloys on the number and concentration of valence electrons’, in ‘Shape memory alloys: manufacture, properties and applications’, (ed. H. R. Chen), 339– 360; Hauppauge, NY Science Publishers.
  • Meng XL, Cai W, Lau KT, Zhao LC, Zhou LM.2005. ‘Phase transformation and microstructure of quaternary TiNiHfCu high temperature shape memory alloys’, Intermetallics. 13, (2), 197–201
  • Zarinejad M, Liu Y and Tong Y.2009. ‘Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys’, Intermetallics. 17, (11), 914–919.
  • Zarinejad M and Liu Y.2008. ‘Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons’, Adv. Funct. Mater. 18, (18), 2789–2794.
  • Potapov PL, Shelyakov AV, Gulyaev AA, Svistunov EL, Matveeva NM and Hodgson D.1997 ‘Effect of Hf on the structure of Ni-Ti martensitic alloys’, Mater. Lett. 32, (4), 247–250.
  • Karaca HE, Acar E, Ded GS, Saghaian SM, Basarab B, Tobe H, Kok M, Maier HJ, Noebe RD, Chumlyakov YI. 2015. Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy”, Mater. Sci. Eng. A. ,627; 82–94
  • Meng XL, Zheng YF, Wang Z and Zhao LC.2000. ‘Effect of aging on the phase transformation and mechanical behavior of Ti36Ni49Hf15 high temperature shape memory alloy’, Scr. Mater. 42, (4), 341–348.
  • Meng XL, Cai W, Zheng YF, Tong YX, Zhao LC and Zhou LM.2002. ‘Stress-induced martensitic transformation behavior of a Ti-Ni-Hf high temperature shape memory alloy’, Mater. Lett. 55, (1–2), 111–115.
  • Bigelow GS, Garg A, Padula II SA, Gaydosh DJ and Noebe RD.2011. ‘Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50?3Ti29?7Hf20 alloy’, Scr. Mater. 64, (8), 725–728.
  • Hong SH, Kim JT, Park HJ, Kim YS, Suh JY, Na YS, Lim KR, Shim CH, Park JM, Kim KB. 2017. ‘Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti-Hf-Zr high temperature shape memory alloys’. Journal of Alloys and Compounds, 692; 77-85
  • Yi X, Pang G, Sun B, Meng X, Cai W. 2018. ‘The microstructure and martensitic transformation behaviors in Ti-Ni-Hf -X (Ag, Sn) high temperature shape memory alloys’. Journal of Alloys and Compounds. 756;19-25.46. Yi X, Gao W, Meng X, Gao Z, Cai W, Zhao L. 2017. ‘Martensitic transformation behaviors and mechanical properties of (Ti36Ni49Hf15)100-xYx high temperature shape memory alloys’. Journal of Alloys and Compounds.705;98-104.
  • Huang,W.,1998. ‘Shape Memory Alloys and their Application to Actuators for Deployable Structures’. PhD Dissertation ,University of Cambridge.
  • Acar, E.2014.’Precipitation, orientation and composition effects on the shape memory properties of high strength NiTiHfPd alloys’, PhD Dissertation, University of Kentucky.

NiTiHf-tabanlı yüksek sıcaklıklı şekil hafızalı alaşımlar

Year 2018, Issue: 14, 110 - 122, 31.12.2018
https://doi.org/10.31590/ejosat.431702

Abstract

Şekil hafızalı alaşımlar metalik akıllı malzemeler olup biyomedikal, havacılık, elektronik, inşaat, petrol ve otomobil dahil olmak üzere bir çok endüstri alanında kullanılmakta ve gelecekte kullanım alanlarının artacağı tahmin edilmektedir. Biyomedikal ve elektronik gibi bazı alanlarda düşük sıcaklıkta gösterilen hafıza özelliği yeterli olmakla birlikte havacılık, petrol ve otomobil uygulamaları için yüksek sıcaklıkta (>100 oC) şekil hafıza özelliği gösteren malzemelere ihtiyaç duyulmaktadır. Bundan dolayı en çok bilinen Nitinol alaşımları yüksek sıcaklık uygulamaları için uygun olmamaktadır. Bu derleme makalesinde yüksek sıcaklık uygulamaları için geliştirilen NiTiHf-tabanlı (Nikel-Titanyum-Hafniyum tabanlı) şekil hafızalı alaşımlar üzerinde yapılan en son araştırmalar ve kullanım alanlarından bahsedilmektedir. NiTiHf-tabanlı yüksek sıcaklıklı şekil hafızalı alaşımların günümüzde yaygın olarak kullanılmasının önündeki engellerden ve bu engellerin ortadan kaldırılması için yapılan çalışmalar hakkında bilgi verilecektir.

References

  • Wayman, C.M., Otsuka, K.1998. Shape Memory Materials, Cambridge University Press.
  • Noebe RD, Biles T and Padula SA. 2007. ‘NiTi-based high-temperature shape-memory alloys: properties, prospects, and potential applications’, in ‘Advanced structural materials: properties, design optimization, and applications’, (ed. W. O. Soboyejo and T. S.Srivatsan); New York, Taylor & Francis Group.
  • LeBlanc L. 2001. ‘Part I – ‘‘Smart metals’’ providing actuation, sealing, and completion functions downhole’, Offshore.61 (12), 58.
  • LeBlanc L.2002. ‘Part II – ‘‘Smart metals’’ providing actuation, sealing, and completion functions downhole’, Offshore.62 (1), 54.
  • Song G, Ma N and Li HN. 2006. ‘Applications of shape memory alloys in civil structures’, Eng. Struct..28, (9), 1266–1274.
  • Van Humbeeck J. 1999. ‘Non-medical applications of shape memory alloys’, Mater. Sci. Eng. A, A273, 134–148.
  • Petrini L and Migliavacca F.2011. ‘Biomedical applications of shape memory alloys’, J. Metall., 501483.
  • El Feninat F, Laroche G, Fiset M and Mantovani D. 2002. ‘Shape memory materials for biomedical applications’, Adv. Eng. Mater.4, (3), 91–104.
  • Firstov GS, Van Humbeeck J and Koval YN.2006. ‘High temperature shape memory alloys problems and prospects’, J. Intell. Mater. Syst. Struct.17, (12), 1041–1047.
  • Karaca HE, Kaya I, Tobe H, Basaran B, Nagasako M, Kainuma R, Chumlyakov YI.2013. ‘Shape memory behavior of high strength Ni54Ti46 alloys’, Mater. Sci. Eng. A. A580, 66–70.
  • Otsuka K and Ren X.2005 ‘Physical metallurgy of Ti-Ni-based shape memory alloys’, Prog. Mater. Sci. 50, (5), 511–678.
  • Ma J, Karaman I and Noebe RD.2010. ‘High temperature shape memory alloys’, Int. Mater. Rev. 55, (5), 257–315.
  • Kockar B, Karaman I, Kim JI and Chumlyakov YI.2006. ‘A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys’, Scr. Mater. 54, (12), 2203–2208.
  • Meng XL, Cai W, Wang LM, Zheng YF, Zhao LC and Zhou LM. 2001. ‘Microstructure of stress-induced martensite in a Ti- Ni-Hf high temperature shape memory alloy’, Scr. Mater..45, (10), 1177–1182.
  • Meng XL, Cai W, Fu YD, Li QF, Zhang JX and Zhao LC.2008. ‘Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy’, Intermetallics. 16, (5), 698–705.
  • Meng XL, Cai W, Chen F and Zhao LC.2006. ‘Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy’, Scr. Mater. 54, 1599–1604.
  • Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD and Chumlyakov YI. 2013. ‘Effects of nanoprecipitation on the shape memory and material propertiesof an Ni-rich NiTiHf high temperature shape memory alloy’, Acta Mater., 61, (19), 7422–7431.
  • Santamarta R, Arro´ R, Pons J, Evirgen A, Karaman I, Karaca HE and Noebe RD.2013. ‘TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni– Ti–Hf and Ni–Ti–Zr shape memory alloys’, Acta Mater. 61,(16), 6191–6206.
  • Karaca HE, Saghaian SM, Basaran B, Bigelow GS, Noebe RD and Chumlyakov YI2011. ‘Compressive response of nickel-rich NiTiHf high-temperature shape memory single crystals along the [1 1 1] orientation’, Scr. Mater. 65, (7), 577–580.
  • Karaca,H.E.,Acar,E.,Tobe,H. and Saghaian,S.M.2014. ”NiTiHf-based shape memory alloys”, Mater. Sci. Technol., 30;1530–1544.
  • Acar E, Karaca HE, Basaran B, Yang F, Mills MJ, Noebe RD and Chumlyakov YI.2013. ‘Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals’, Mater. Sci. Eng. A. A573, 161–165.
  • Acar E, Karaca HE, Tobe H, Noebe RD and Chumlyakov YI.2013. ‘Characterization of the shape memory properties of a Ni45?3Ti39?7Hf10Pd5 alloy’, J. Alloys Compd. 578, 297–302.
  • Karaca HE, Acar E, Basaran B, Noebe RD, Bigelow GS, Garg A, Yang F, Mills MJ and Chumlyakov YI.2012. ‘Effects of aging on [111] oriented NiTiHfPd single crystals under compression’, Scr. Mater.67, (7–8), 728–731.
  • Acar E, Ozbulut OE and Karaca HE. 2015. Experimental investigation and modeling of the loading rate and temperature dependent superelastic response of a high performance shape-memory alloy, Smart Mater. Struct., (24/7), 75020.
  • Acar E. 2015. Dynamic mechanical response of a Ni45. 7Ti29. 3Hf20Pd5 alloy, Materiaşs Science and Engineering A, (633) 169-175.
  • Karaca HE, Acar E, Ded GS, Basaran B, Tobe H, Noebe RD, Bigelow G and Chumlyakov YI.2013. ‘Shape memory behavior of high strength NiTiHfPd polycrystalline alloys’, ActaMater. 61, (13), 5036–5049.
  • Karaca HE, Acar E, Basaran B, Noebe RD and Chumlyakov YI.2012. ‘Superelastic response and damping capacity of ultrahigh-strength [111]-oriented NiTiHfPd single crystals’, Scr. Mater. 67, (5), 447–450.
  • Kim HY, Jinguu T, Nam TH and Miyazaki S.2011. ‘Cold workability and shape memory properties of novel Ti–Ni–Hf–Nb high-temperature shape memory alloys’, Scr. Mater. 65, (9), 846–849.
  • Liang XL, Chen Y, Shen HM, Zhang ZF, Li W and Wang YN.2001. ‘Thermal cycling stability and two-way shape memory effect of Ni-Cu-Ti-Hf alloys’, Solid State Commun. 119, (6), 381–385.
  • Hsieh SF and Wu SK.2000. ‘Martensitic transformation of quaternary Ti50?5-XNi49?5ZrX/2HfX/2 (X50–20 at.%) shape memory alloys’, Mater. Charact. 45, (2), 143–152.
  • Besseghini S, Villa E and Tuissi A.1999 ‘Ni-Ti-Hf shape memory alloy: effect of aging and thermal cycling’, Mater. Sci. Eng. A. A273–A275, 390–394.
  • Angst DR, Thoma PE and Kao MY.1995. ‘The effect of Hafnium content on the transformation temperatures of Ni49Ti51-xHfx shape memory alloy’, J. Phys. IV, Colloq. C8, 747–752.
  • Abu Judom D, Thoma PE, Kao MY and Angst DR.1992. ‘High transformation temperature shape memory alloy’, US patent 5,114,504.
  • Wang YQ, Zheng YF, Cai W and Zhao LC.1999. ‘The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy’, Scr. Mater. 40, (12), 1327–1331.
  • Zarinejad M and Liu Y.2010. ‘Dependence of transformation temperatures of shape memory alloys on the number and concentration of valence electrons’, in ‘Shape memory alloys: manufacture, properties and applications’, (ed. H. R. Chen), 339– 360; Hauppauge, NY Science Publishers.
  • Meng XL, Cai W, Lau KT, Zhao LC, Zhou LM.2005. ‘Phase transformation and microstructure of quaternary TiNiHfCu high temperature shape memory alloys’, Intermetallics. 13, (2), 197–201
  • Zarinejad M, Liu Y and Tong Y.2009. ‘Transformation temperature changes due to second phase precipitation in NiTi-based shape memory alloys’, Intermetallics. 17, (11), 914–919.
  • Zarinejad M and Liu Y.2008. ‘Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons’, Adv. Funct. Mater. 18, (18), 2789–2794.
  • Potapov PL, Shelyakov AV, Gulyaev AA, Svistunov EL, Matveeva NM and Hodgson D.1997 ‘Effect of Hf on the structure of Ni-Ti martensitic alloys’, Mater. Lett. 32, (4), 247–250.
  • Karaca HE, Acar E, Ded GS, Saghaian SM, Basarab B, Tobe H, Kok M, Maier HJ, Noebe RD, Chumlyakov YI. 2015. Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy”, Mater. Sci. Eng. A. ,627; 82–94
  • Meng XL, Zheng YF, Wang Z and Zhao LC.2000. ‘Effect of aging on the phase transformation and mechanical behavior of Ti36Ni49Hf15 high temperature shape memory alloy’, Scr. Mater. 42, (4), 341–348.
  • Meng XL, Cai W, Zheng YF, Tong YX, Zhao LC and Zhou LM.2002. ‘Stress-induced martensitic transformation behavior of a Ti-Ni-Hf high temperature shape memory alloy’, Mater. Lett. 55, (1–2), 111–115.
  • Bigelow GS, Garg A, Padula II SA, Gaydosh DJ and Noebe RD.2011. ‘Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50?3Ti29?7Hf20 alloy’, Scr. Mater. 64, (8), 725–728.
  • Hong SH, Kim JT, Park HJ, Kim YS, Suh JY, Na YS, Lim KR, Shim CH, Park JM, Kim KB. 2017. ‘Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti-Hf-Zr high temperature shape memory alloys’. Journal of Alloys and Compounds, 692; 77-85
  • Yi X, Pang G, Sun B, Meng X, Cai W. 2018. ‘The microstructure and martensitic transformation behaviors in Ti-Ni-Hf -X (Ag, Sn) high temperature shape memory alloys’. Journal of Alloys and Compounds. 756;19-25.46. Yi X, Gao W, Meng X, Gao Z, Cai W, Zhao L. 2017. ‘Martensitic transformation behaviors and mechanical properties of (Ti36Ni49Hf15)100-xYx high temperature shape memory alloys’. Journal of Alloys and Compounds.705;98-104.
  • Huang,W.,1998. ‘Shape Memory Alloys and their Application to Actuators for Deployable Structures’. PhD Dissertation ,University of Cambridge.
  • Acar, E.2014.’Precipitation, orientation and composition effects on the shape memory properties of high strength NiTiHfPd alloys’, PhD Dissertation, University of Kentucky.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emre Acar 0000-0003-1114-6251

Publication Date December 31, 2018
Published in Issue Year 2018 Issue: 14

Cite

APA Acar, E. (2018). NiTiHf-tabanlı yüksek sıcaklıklı şekil hafızalı alaşımlar. Avrupa Bilim Ve Teknoloji Dergisi(14), 110-122. https://doi.org/10.31590/ejosat.431702