Research Article
BibTex RIS Cite

Investigation of the Effects of Pore Widening Times on Oxide Pores on Pure Aluminum in Two-Step Anodic Oxidation Process

Year 2019, Issue: 17, 38 - 44, 31.12.2019
https://doi.org/10.31590/ejosat.613555

Abstract

An anodic oxidation
process is a commonly used for surface treatment to improve the surface
properties of the metals and their alloys such as aluminum, tantalum, titanium,
molybdenum etc. and thereby increase the service life of the specimen parts
from these metals. A type of anodic oxidation process with different types and
conditions is made in the two-step anodic oxidation process. The two-step
anodic oxidation is a process that improves several surface properties, such as
increasing the corrosion resistance by forming a continuous layer on the
surface of a suitable metal such as aluminum. In a two-step anodic oxidation
process, which has a more regular pore array than  one-step anodic oxidation, nanotechnology
applications have been rapidly developing and with the potential production of
various nano-tubes and nano-wires. In this study, the two-step potentiostatic
anodic oxidation process on pure aluminum surface was investigated. For this
purpose, electrolytically polished samples were anodized at 0,3 M oxalic acid
solution at 40 V constant voltage for different times and were subjected to
pore expansion in 0.1 M phosphoric acid solution. The current density time
graphs obtained during anodic oxidation processes at constant voltages are
important for the reproducibility of the anodic oxidation process. The
properties of the anodic alumina in the porous structure obtained after pore
expansion at different times (0, 30 and 60 minutes) and the average pore
diameters were examined by SEM analysis. After the surface investigations, it
has been determined that pore arrays become 
smooth and pore
diameters increase depending on an increase in pore widening time. Depending on
the desired processes, the fabrication of nanowires/tubes with different sizes
can be carried out as desired uniform and homogeneous nanostructures.

References

  • Bouchama, L., Azzouz, N., Boukmouche, N., Chopart, J. P., Daltin, a. L., & Bouznit, Y. (2013). Enhancing aluminum corrosion resistance by two-step anodizing process. Surface and Coatings Technology, 235, 676–684. https://doi.org/10.1016/j.surfcoat.2013.08.046
  • Diggle, J., Downie, T., & Goulding, C. (1969). Anodic oxide films on aluminum. Chemical Reviews, 66(3), 365. https://doi.org/10.1021/cr60259a005
  • Dimiduk, D. M., Uchic, M. D., & Parthasarathy, T. A. (2005). Size-affected single-slip behavior of pure nickel microcrystals. Acta Materialia, 53(15), 4065–4077. https://doi.org/10.1016/j.actamat.2005.05.023
  • Erdogan, P., Yuksel, B., & Birol, Y. (2012). Effect of chemical etching on the morphology of anodic aluminum oxides in the two-step anodization process. Applied Surface Science, 258(10), 4544–4550. https://doi.org/10.1016/j.apsusc.2012.01.025
  • Ersching, K., Dorico, E., Da Silva, R. C., Zoldan, V. C., Isoppo, E. a., Viegas, a. D. C., & Pasa, a. a. (2012). Surface and interface characterization of nanoporous alumina templates produced in oxalic acid and submitted to etching procedures. Materials Chemistry and Physics, 137(1), 140–146. https://doi.org/10.1016/j.matchemphys.2012.08.058
  • Greer, J. R., & De Hosson, J. T. M. (2011). Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Progress in Materials Science, 56(6), 654–724. https://doi.org/10.1016/j.pmatsci.2011.01.005
  • Greer, J. R., Oliver, W. C., & Nix, W. D. (2005). Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Materialia, 53(6), 1821–1830. https://doi.org/10.1016/j.actamat.2004.12.031
  • Han, X. Y., & Shen, W. Z. (2011). Improved two-step anodization technique for ordered porous anodic aluminum membranes. Journal of Electroanalytical Chemistry, 655(1), 56–64. https://doi.org/10.1016/j.jelechem.2011.02.008
  • Iglesias-Rubianes, L., Skeldon, P., Thompson, G. E., Shimizu, K., & Habazaki, H. (2001). Influence of current density in anodizing of an Al-W alloy. Corrosion Science, 43(12), 2217–2227. https://doi.org/10.1016/S0010-938X(01)00022-1
  • Ilango, M. S., Mutalikdesai, A., & Ramasesha, S. K. (2016). Anodization of Aluminium using a fast two-step process. Journal of Chemical Sciences, 128(1), 153–158. https://doi.org/10.1007/s12039-015-1006-8
  • Kiener, D., Motz, C., Schöbert, T., Jenko, M., & Dehm, G. (2006). Determination of mechanical properties of copper at the micron scale. Advanced Engineering Materials, 8(11), 1119–1125. https://doi.org/10.1002/adem.200600129
  • Konno, H., Utaka, K., & Furuichi, R. (1996). A two step anodizing process of aluminium as a means for improving the chemical and physical properties of oxide films. Corrosion Science, 38(12), 2247–2256. https://doi.org/10.1016/S0010-938X(97)83145-9
  • Li, A. P., Müller, F., Birner, A., Nielsch, K., & Gösele, U. (1999). Polycrystalline nanopore arrays with hexagonal ordering on aluminum. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17(4), 1428–1431. https://doi.org/10.1116/1.581832
  • Liu, Y.-F., Wang, F.-H., Guo, D.-L., Huang, S.-Y., Sang, J.-P., & Zou, X.-W. (2009). Effects of heat treatment on optical absorption properties of Ni–P/AAO nano-array composite structure. Applied Physics A, 97(3), 677–681. https://doi.org/10.1007/s00339-009-5289-9
  • Ma, Y. (2010). Effect of Microstructure on corrosion resistance and anodising behaviour of AA 2099-T8 aluminium alloy, 1–311.
  • Masuda, H., & Fukuda, K. (1995). Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structuresof Anodic Alumina. Science, 268(5216), 1466–1468. https://doi.org/10.1126/science.268.5216.1466
  • Moldovan, V., Bruj, E., & Jumate, N. (2011). Porous anodic alumina films obtained by two step anodization. Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences, 4(2), 75–80. https://doi.org/10.1007/s10008-011-1471-z
  • Montero-Moreno, J. M., Sarret, M., & Müller, C. (2007). Influence of the aluminum surface on the final results of a two-step anodizing. Surface and Coatings Technology, 201, 6352–6357. https://doi.org/10.1016/j.surfcoat.2006.12.003
  • Montero-Moreno, J. M., Sarret, M., & Müller, C. (2007). Some Considerations on the Influence of Voltage in Potentiostatic Two-Step Anodizing of AA1050. Journal of The Electrochemical Society, 154(3), 169–174. https://doi.org/10.1149/1.2426880
  • Ng, K. S., & Ngan, A. H. W. (2008). Stochastic nature of plasticity of aluminum micro-pillars. Acta Materialia, 56(8), 1712–1720. https://doi.org/10.1016/j.actamat.2007.12.016
  • Sheasby, P., & Pinner, R. (2001). The surface treatment and finishing of aluminium and its alloys.
  • Stelmashenko, N. A., Walls, M. G., Brown, L. M., & Milman, Y. V. (1993). Microindentations on W and Mo oriented single crystals: An STM study. Acta Metallurgica Et Materialia, 41(10), 2855–2865. https://doi.org/10.1016/0956-7151(93)90100-7
  • Sulka, G. D. (2008). Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In Nanostructured Materials in Electrochemistry (pp. 1–116). https://doi.org/10.1002/9783527621507.ch1
  • Thompson, G., Xu, Y., & Skeldon, P. (1987). Anodic oxidation of aluminium. Philosophical Magazine Part B, 55(6), 651–667. https://doi.org/10.1080/13642818708218371
  • Uchic, M. D., Dimiduk, D. M., Florando, J. N., & Nix, W. D. (2004). Sample dimensions influence strength and crystal plasticity. Science, 305(5686), 986–989. https://doi.org/10.1126/science.1098993
  • Zaraska, L., Sulka, G. D., & Jaskuła, M. (2010). The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surface and Coatings Technology, 204(11), 1729–1737. https://doi.org/10.1016/j.surfcoat.2009.10.051
  • Zaraska, L., Sulka, G. D., & Jaskuła, M. (2011). Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. Journal of Solid State Electrochemistry, 15(11–12), 2427–2436. https://doi.org/10.1007/s10008-011-1471-z
  • Zhou, J. H., He, J. P., Zhao, G. W., Zhang, C. X., Zhao, J. S., & Hu, H. P. (2007). Alumina nanostructures prepared by two-step anodization process. Transactions of Nonferrous Metals Society of China (English Edition), 17(1), 82–86. https://doi.org/10.1016/S1003-6326(07)60052-1

Saf Alüminyuma Uygulanan İki Aşamalı Anodik Oksidasyon İşleminde Por Genişletme Süresinin Oksit Porlar Üzerindeki Etkilerinin İncelenmesi

Year 2019, Issue: 17, 38 - 44, 31.12.2019
https://doi.org/10.31590/ejosat.613555

Abstract

Anodik oksidasyon
işlemi alüminyum, tantalyum, titanyum, molibden vb. metal ve alaşımlarının
yüzey özelliklerini geliştirmek ve böylece bu metallerden üretilen parçaların
servis ömürlerini arttırmak için yaygın bir şekilde kullanılan bir yüzey
işlemidir. Çok farklı türlerde ve koşullrda yapılan anodik oksidasyon işleminin
bir çeşiti de iki aşamalı anodik oksidasyon işlemidir. İki aşamalı anodik
oksidasyon işlemi, alüminyum gibi uygun bir metalinin yüzeyinde sürekli bir
tabaka oluşturarak korozyon direncini arttırma gibi birçok yüzey özelliğini
geliştiren bir işlemdir. Tek aşamalı anodik oksidasyona göre daha düzenli bir
por dizilimine sahip olan iki aşamalı anodik oksidasyon işleminde,
nanoteknoloji uygulamaları çok hızlı bir gelişim göstermiş ve bununla beraber
çeşitli nano-tüpler ve nano-tellerin potansiyel üretimleri yapılmaktadır. Bu
çalışmada, saf alüminyum yüzeyinde iki aşamalı potansiyostatik anodik
oksidasyon işlemi incelenmiştir. Bu amaçla elektrolitik olarak parlatılan
numuneler 0,3 M oksalik asit çözeltisinde 40 V sabit gerilim değerinde farklı
sürelerde anodize edilen numuneler 0,1 M fosforik asit çözeltisinde por
genişletme işlemine tabi tutulmuştur. Sabit geriilim değerinde yapılan anodik
oksidasyon işlemleri sırasında elde edilen akım yoğunluğu süre grafikleri
anodik oksidasyon işleminin tekrarlanabilirliği açından önem arz etmektedir. Farklı
sürelerde (0, 30 ve 60 dakika) yapılan por genişletme işleminden sonra elde
edilen gözenekli yapıdaki anodik alüminanın homojenliği ve ortalama por çapları
gibi özellikleri yüzeyden yapılan SEM analizleriyle incelenmiştir. Yapılan
incelemeler sonunda artan por genişletme süresine bağlı olarak por
dizilimlerinin düzgünleştiği ve por çaplarının arttığı tespit edilmiştir.
İşlemlerin
arzu
edilen şekilde
yapılmasına
bağlı olarak
farklı boyutlarda
sahip nanotellerin/tüplerin üretimi istenilen düzgün ve homojen nanoyapılar
şeklinde gerçekleştirilebilecektir.



 

References

  • Bouchama, L., Azzouz, N., Boukmouche, N., Chopart, J. P., Daltin, a. L., & Bouznit, Y. (2013). Enhancing aluminum corrosion resistance by two-step anodizing process. Surface and Coatings Technology, 235, 676–684. https://doi.org/10.1016/j.surfcoat.2013.08.046
  • Diggle, J., Downie, T., & Goulding, C. (1969). Anodic oxide films on aluminum. Chemical Reviews, 66(3), 365. https://doi.org/10.1021/cr60259a005
  • Dimiduk, D. M., Uchic, M. D., & Parthasarathy, T. A. (2005). Size-affected single-slip behavior of pure nickel microcrystals. Acta Materialia, 53(15), 4065–4077. https://doi.org/10.1016/j.actamat.2005.05.023
  • Erdogan, P., Yuksel, B., & Birol, Y. (2012). Effect of chemical etching on the morphology of anodic aluminum oxides in the two-step anodization process. Applied Surface Science, 258(10), 4544–4550. https://doi.org/10.1016/j.apsusc.2012.01.025
  • Ersching, K., Dorico, E., Da Silva, R. C., Zoldan, V. C., Isoppo, E. a., Viegas, a. D. C., & Pasa, a. a. (2012). Surface and interface characterization of nanoporous alumina templates produced in oxalic acid and submitted to etching procedures. Materials Chemistry and Physics, 137(1), 140–146. https://doi.org/10.1016/j.matchemphys.2012.08.058
  • Greer, J. R., & De Hosson, J. T. M. (2011). Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Progress in Materials Science, 56(6), 654–724. https://doi.org/10.1016/j.pmatsci.2011.01.005
  • Greer, J. R., Oliver, W. C., & Nix, W. D. (2005). Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Materialia, 53(6), 1821–1830. https://doi.org/10.1016/j.actamat.2004.12.031
  • Han, X. Y., & Shen, W. Z. (2011). Improved two-step anodization technique for ordered porous anodic aluminum membranes. Journal of Electroanalytical Chemistry, 655(1), 56–64. https://doi.org/10.1016/j.jelechem.2011.02.008
  • Iglesias-Rubianes, L., Skeldon, P., Thompson, G. E., Shimizu, K., & Habazaki, H. (2001). Influence of current density in anodizing of an Al-W alloy. Corrosion Science, 43(12), 2217–2227. https://doi.org/10.1016/S0010-938X(01)00022-1
  • Ilango, M. S., Mutalikdesai, A., & Ramasesha, S. K. (2016). Anodization of Aluminium using a fast two-step process. Journal of Chemical Sciences, 128(1), 153–158. https://doi.org/10.1007/s12039-015-1006-8
  • Kiener, D., Motz, C., Schöbert, T., Jenko, M., & Dehm, G. (2006). Determination of mechanical properties of copper at the micron scale. Advanced Engineering Materials, 8(11), 1119–1125. https://doi.org/10.1002/adem.200600129
  • Konno, H., Utaka, K., & Furuichi, R. (1996). A two step anodizing process of aluminium as a means for improving the chemical and physical properties of oxide films. Corrosion Science, 38(12), 2247–2256. https://doi.org/10.1016/S0010-938X(97)83145-9
  • Li, A. P., Müller, F., Birner, A., Nielsch, K., & Gösele, U. (1999). Polycrystalline nanopore arrays with hexagonal ordering on aluminum. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17(4), 1428–1431. https://doi.org/10.1116/1.581832
  • Liu, Y.-F., Wang, F.-H., Guo, D.-L., Huang, S.-Y., Sang, J.-P., & Zou, X.-W. (2009). Effects of heat treatment on optical absorption properties of Ni–P/AAO nano-array composite structure. Applied Physics A, 97(3), 677–681. https://doi.org/10.1007/s00339-009-5289-9
  • Ma, Y. (2010). Effect of Microstructure on corrosion resistance and anodising behaviour of AA 2099-T8 aluminium alloy, 1–311.
  • Masuda, H., & Fukuda, K. (1995). Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structuresof Anodic Alumina. Science, 268(5216), 1466–1468. https://doi.org/10.1126/science.268.5216.1466
  • Moldovan, V., Bruj, E., & Jumate, N. (2011). Porous anodic alumina films obtained by two step anodization. Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences, 4(2), 75–80. https://doi.org/10.1007/s10008-011-1471-z
  • Montero-Moreno, J. M., Sarret, M., & Müller, C. (2007). Influence of the aluminum surface on the final results of a two-step anodizing. Surface and Coatings Technology, 201, 6352–6357. https://doi.org/10.1016/j.surfcoat.2006.12.003
  • Montero-Moreno, J. M., Sarret, M., & Müller, C. (2007). Some Considerations on the Influence of Voltage in Potentiostatic Two-Step Anodizing of AA1050. Journal of The Electrochemical Society, 154(3), 169–174. https://doi.org/10.1149/1.2426880
  • Ng, K. S., & Ngan, A. H. W. (2008). Stochastic nature of plasticity of aluminum micro-pillars. Acta Materialia, 56(8), 1712–1720. https://doi.org/10.1016/j.actamat.2007.12.016
  • Sheasby, P., & Pinner, R. (2001). The surface treatment and finishing of aluminium and its alloys.
  • Stelmashenko, N. A., Walls, M. G., Brown, L. M., & Milman, Y. V. (1993). Microindentations on W and Mo oriented single crystals: An STM study. Acta Metallurgica Et Materialia, 41(10), 2855–2865. https://doi.org/10.1016/0956-7151(93)90100-7
  • Sulka, G. D. (2008). Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In Nanostructured Materials in Electrochemistry (pp. 1–116). https://doi.org/10.1002/9783527621507.ch1
  • Thompson, G., Xu, Y., & Skeldon, P. (1987). Anodic oxidation of aluminium. Philosophical Magazine Part B, 55(6), 651–667. https://doi.org/10.1080/13642818708218371
  • Uchic, M. D., Dimiduk, D. M., Florando, J. N., & Nix, W. D. (2004). Sample dimensions influence strength and crystal plasticity. Science, 305(5686), 986–989. https://doi.org/10.1126/science.1098993
  • Zaraska, L., Sulka, G. D., & Jaskuła, M. (2010). The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surface and Coatings Technology, 204(11), 1729–1737. https://doi.org/10.1016/j.surfcoat.2009.10.051
  • Zaraska, L., Sulka, G. D., & Jaskuła, M. (2011). Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. Journal of Solid State Electrochemistry, 15(11–12), 2427–2436. https://doi.org/10.1007/s10008-011-1471-z
  • Zhou, J. H., He, J. P., Zhao, G. W., Zhang, C. X., Zhao, J. S., & Hu, H. P. (2007). Alumina nanostructures prepared by two-step anodization process. Transactions of Nonferrous Metals Society of China (English Edition), 17(1), 82–86. https://doi.org/10.1016/S1003-6326(07)60052-1
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Halil Yılmaz 0000-0003-3585-0665

Mustafa Kocabas This is me 0000-0003-2179-5183

Publication Date December 31, 2019
Published in Issue Year 2019 Issue: 17

Cite

APA Yılmaz, H., & Kocabas, M. (2019). Saf Alüminyuma Uygulanan İki Aşamalı Anodik Oksidasyon İşleminde Por Genişletme Süresinin Oksit Porlar Üzerindeki Etkilerinin İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(17), 38-44. https://doi.org/10.31590/ejosat.613555